

King Fahd University of Petroleum & Minerals  
 Department of Mathematics  
 Spring 2026 (Term 252)  
**SYLLABUS**

Course : **Math 323**  
 Title : **Modern Algebra I**  
 Textbook : Contemporary Abstract Algebra, by J. A. Gallian, 8<sup>th</sup> edition.  
 Objective : Introduce students to the basic notions and techniques of Abstract Algebra.

| Weeks          | Part   | Chapters | Titles                                                                  |
|----------------|--------|----------|-------------------------------------------------------------------------|
| <b>1 – 9</b>   | Groups | 2        | Groups                                                                  |
|                |        | 3        | Finite groups and subgroups                                             |
|                |        | 4        | Cyclic groups                                                           |
|                |        | 5        | Permutation groups                                                      |
|                |        | 6        | Isomorphisms                                                            |
|                |        | 7        | Cosets and Lagrange's Theorem                                           |
|                |        | 8        | External direct products                                                |
|                |        | 9        | Normal subgroups and factor groups                                      |
|                |        | 10       | Group homomorphisms                                                     |
|                |        | 11       | Fundamental theorem of finite abelian groups                            |
| <b>10 – 15</b> | Rings  | 12       | Introduction to rings                                                   |
|                |        | 13       | Integral domains                                                        |
|                |        | 14       | Ideals and factor rings                                                 |
|                |        | 15       | Ring homomorphisms                                                      |
|                |        | 16       | Polynomial rings                                                        |
|                |        | 17 4.2   | Factorization of polynomials over a field [from W. K. Nicholson's Book] |
|                |        | 18 4.3   | Factor rings of polynomials over a field [from W. K. Nicholson's Book]  |

**Eid Al-Fitr Holidays: March 15 – 26, 2026**

| Grading Policy (*)   | Weight     | Dates                                                                  | Homework (**)                    |
|----------------------|------------|------------------------------------------------------------------------|----------------------------------|
| Homework             | 40         | -                                                                      | HW 1/10 Ch. 2, 3, 4 10 Pbs       |
| Exam 1 (Ch. 2 – 11)  | 80/60      | Wed. March 11, 7 p.m. 4-210                                            | HW 2/10 Ch. 5, 6, 7, 8 10 Pbs    |
| Exam 2 (Ch. 12 – 16) |            | Wed. April 29, 7 p.m. 4-210                                            | HW 3/10 Ch. 9, 10, 11 10 Pbs     |
| Final Exam (Comp.)   | 120        | tba                                                                    | HW 4/10 Ch. 12, 13, 14 10 Pbs    |
| <b>TOTAL</b>         | <b>300</b> | <b>Maghrib prayer:<br/>March 10 @ 5:46 p.m.   April 28 @ 6:11 p.m.</b> | <b>HW 5/10 Ch. 15, 16 10 Pbs</b> |

(\*) **No Makeup** is given under any circumstance. If a student misses an assessment for a legitimate reason (e.g., medical emergency), his final grade will be determined based on the non-missed assessments.

(\*\*) The **homework** should be emailed (in PDF) to the TA (see coordinates below).

**Learning Outcomes:** Upon completion of this course, students should be able to

- Define normal subgroups, factor groups, homomorphisms
- Discuss the fundamental theorem of finite Abelian groups
- Explain integral domains and fields
- Define ideals, factor rings and ring homomorphisms
- Explain factorization of polynomials over a field, factor rings of polynomials over a field
- Define irreducible elements and unique factorization
- Discuss principal ideal domains

. **Academic Integrity:** All KFUPM ethic policies apply in this course.

. **University Policy on Attendance:** A DN grade will be awarded to any student who accumulates 9 absences.

. **Office Hours:** Office hours: UT 9:00 a.m. – 10:30 a.m. and via Email & MS Teams

. **Instructor:** Salah-Eddine Kabbaj, Office: 5-428, Email: [kabbaj@kfupm.edu.sa](mailto:kabbaj@kfupm.edu.sa)

. **TA:** Yousef Odeh, Email: [g202416340@kfupm.edu.sa](mailto:g202416340@kfupm.edu.sa)