King Fahd University Of Petroleum \& Minerals Department Of Mathematics

AS201 : Financial Mathematics (231)
ID:

Name:

Question \#	Full Mark	Marks Obtained
1	8	
2	8	
3	8	
4	5	
5	5	
6	10	
7	10	
9	10	
10	10	
11	10	
12	$70 t a l$	8

1. Ed buys a TV from Al for 480 by paying 50 in cash, 100 every three months for one year (four payments of 100), and a final payment in 15 months (three months after the final quarterly payment). Find the amount of the final payment if Al earns a 3-month compound interest rate of 3%. What is the final payment if Al earns a one-month rate of 1% ?
2. Eric deposits X into a savings account at time 0 , which pays interest at a nominal rate of i, compounded semiannually.

Mike deposits 2 X into a different savings account at time 0 , which pays simple interest at an annual rate of i .

Eric and Mike earn the same amount of interest during the last 6 months of the 8th year. Calculate i.
3. Jeff deposits 10 into a fund today and 20 fifteen years later. Interest is credited at a nominal discount rate of d compounded quarterly for the first 10 years, and at a nominal interest rate of 6% compounded semiannually thereafter. The accumulated balance in the fund at the end of 30 years is 100 . Calculate d.
4. At time $t=0,1$ is deposited into each of Fund X and Fund Y. Fund X accumulates ta a force of interest $\delta_{t}=\frac{t^{2}}{k}$. Fund Y accumulates at a nominal rate of discount of 8% per annum convertible semiannualy. At time $t=5$, the accumulated value of Fund X equals the accumulated value of Fund Y. Determine k.
5. Suppose that for the coming year inflation is forecast at an effective annual rate of $r=0.15$ and interest is forecast at effective annual rate $i=0.10$. What will be the corresponding real, or inflation- adjusted rate of interest for the coming year?
6. Assume $\$ 100,000$ can be invested under two options:

Option 1: Deposit the $\$ 100,000$ into a fund earning an annual effective rate of i.
Option 2 : Purchase an annuity-immediate with 36 level annual payments at an annual effective rate of 10%.

The payments under Option 2 are deposited into a fund earning an annual effective rate of 5%. Both options produce the same accumulated value at the end of 36 years. Calculate i.
7. Given $\mathbf{s}_{\mathbf{1 0 7 . 1}}=\mathbf{S}$ find the value of $\sum_{\mathrm{k}=\mathbf{1}}^{10} \mathbf{s}_{\mathbf{k} 7.1}$ in term of S .
8. A perpetuity paying 1at the beginning of each 6-month period has a present value of 20 . A second perpetuity pays X at the beginning of every 2 years. Assuming the same effective annual interest rate, the two present values are equal. Determine X.
9. Kathryn deposits 10 into an account at the beginning of each 4 -year period for 40 years. The account credits interest at an effective annual interest rate of i. The accumulated amount in the account at the end of 40 years is X, which is 5 times the accumulated amount in the account at the end of 20 years. Calculate X.
10. On the first day of every January, April, July and October Smith deposit 100 in an account earning $i^{(4)}=0.16$. He continues the deposits until he accumulates a sufficient balance to begin withdrawals of 200 every 3 months, starting 3 months after the final deposit, such that he can make twice as many withdrawals as he made deposits. How many deposits are needed?
11. Olga buys a 5 -year increasing annuity for X. Olga will receive 2 at the end of the first month, 4 at the end of the second month, and for each month thereafter the payment increases by 2 . The nominal interest rate is 9% convertible quarterly. Calculate X.
12. Joe can purchase one of two annuities:

Annuity 1:

A 10-year decreasing annuity-immediate, with annual payments of 10,9, 8,..,1.
Annuity 2:
A perpetuity-immediate with annual payments. The perpetuity pays 1 on year 1,2 in year 2,3 in year $3, \ldots$, and 11 in year 11 . After year 11, the payments remain constant at 11.

At an effective annual interest rate of i, the present value of Annuity 2 is twice the present value of Annuity 1. Calculate the value of Annuity 1.

