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Exercise

Prices for a stock are modeled with a 1-period binomial tree with v = 1.2, d = 0.7, and a period of 3 months.
A European call option on the stock expires in 3 months.
You are given:

1. The stock’s initial price is $50.

2. The stock pays no dividends.

3. The strike price for the call option is $55.
4. The price of the call option is $3.10.

Determine the continuously compounded risk-free interest rate.
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Exercise /'/7 $ /I/7T

A stock currently has a price of $45.00 and pays no dividends. One year from now, there is a risk-neutral
probability of 50% that the price of the stock will be $30.00 and a risk-neutral probability of 50% that it will
be greater than $40.00. .

The effective annual risk-free interest rate is 4%../],7 L /I/?K

Calculate the price of a one-year European call option with an exercise price of $40.00. Then,

< G=moxf 0, up-tof = 23.6
= (= " | p*Gu+t-p G
4047 | 0.5.23.C -\-0.5:0]
—=44.34%



Exercise

The price of a non-dividend-paying stock is modeled by the following 1-period binomial tree, with each period
being one year:

A European call option expiring in one year on the stock has a strike price of $30.
The continuously compounded risk-free interest rate is 4%.
Determine the number of shares of stock in the replicating portfolio for the call option.
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Exercise
For a 6-month European put option on a stock, you are given:
e The stock price is 150.
e The strike price is 160.
e y=13and d=0.7.
e The continuously compounded risk-free rate is 6%.

e There are no dividends.

The option is modeled with a 2-period binomial tree. -26 g. S
Determine the option premium. rP O
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Exercise

For a 6-month American put option on a stock, you are given:
e The stock price is 150.
e The strike price is 160.
e y=13and d=0.7.
e The continuously compounded risk-free rate is 6%.
e There are no dividends.

The option is modeled with a 2-period binomial tree.
Determine the option premium.
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Exercise

The spot exchange rate of dollars for euros is g = 1.15. A 6-month American call option allows purchase of
euros at 1.25 dollar for 1 euro. You are given:
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Exercise

Future prices of dollars expressed in euros are modeled with a 2-period binomial tree, with each period being
6 months.

You are given: h = 0. S

1. The spot exchange rate is 0.9..~2 -~ n T._-_ q_

2. The tree has v = 1.1 and d = 0.9.

3. The continuously compounded risk-free interest rate for euros is 0.07.=2~ T

4. The continuously compounded risk-free interest rate for dollars is 0.05. ©_— 2

A euro-denominated American put option on dollars expiring in 1 year has a strike price of 0.95 euro.
Determine the option’s premium.
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Exercise

Future prices of a stock are modeled with a 2-period binomial tree. The risk-neutral probabilities of up
movements at all nodes of the tree are equal. A European option on the stock has the following prices
Determine Cy, the price of the option at the initial node.
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Exercise

A non-dividend paying stock has a current value of 100. In each of the next six-month periods, the stock price
could rise by 25% or fall by 25%. The risk-free interest rate is 6% per year.
Consider a European call on this stock with an exercise price of 90. Then, C, + Cy =
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Exercise

For an American call option on a stock:

(i) The stock price is $50. # L~ 5

)
(ii) The strike price is $45.#7) ¥. A‘[
(iii) There are 3 months to expiry. /V' T: b‘
)
)

(iv) The stock is about to pay a dividend of D.
(v) r=

Determine the least upper bound of values for D such that immediate exercise is definitely not optimal.
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Exercise go — g 0

S; is the price of a non-dividend-paying stock at time ¢. S; follows a lognormal model.
You are given:

e The continuously compounded annual rate of return on the stock is 0.15.
e The stock’s volatility is 0.3.

e Sy =80.

Calculate the probability that Sy is at least 150.
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Exercise

S; is the price of a non-dividend-paying stock at time t. S; follows a lognormal model. You are given:

1. Sy = 40.
2. The stock’s continuously compounded expected growth rate is o = 0.15.

3. The stock’s volatility ¢ = 0.3.

Determine the median price of the stock after one year.
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Exercise
S; is the price of a non-dividend-paying stock at time t. S; follows a lognormal model. You are given:
1. Sy = 40.
2. The stock’s continuously compounded expected growth rate is o = 0.15.
3. The stock’s volatility o = 0.3. t LI
=
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Exercise

A stock’s prices follow a lognormal distribution. You are given:

e =014
e 6 =0.02
e 0 =03

Determine the probability that the stock’s price at the end of one month will be greater than its current price.
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Exercise
A stock’s prices follow a lognormal distribution. You are given:
e a=0.14
o §=10.02 A I - t
1
¢« 0=103 1
RO

e For a standard normal distribution, the 97.5gpercentile is 1.96. 177 %d/ ‘L
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Exercise

A stock’s price follows a lognormal model. You are given:

1. So =60

2. a=0.15 [

3. 0=02 \é T’-‘— \IL}
4.

§=0.05 /‘/7

A European call option on the stock with strike price 70 expires in 3 months.
Calculate the probability that the option pays off.
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Exercise

A stock’s price follows a lognormal model. You are given:
(i) The stock’s initial price is $40.
(ii) a«=0.10 ?- S <5 O
(iii) o =0.15 {7 = 2

(iv) The stock pays no dividends. /\/7 S=

Calculate the conditional expected value of the stock after 2 years given that it is less than $50.
Hint: N(0.00303) = 0.50121, N(0.21516) = 0.58518, N(0.4) = 0.65542 and N(0.6) = 0.72575
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Exercise 7

For a non-dividend paying stock, you are given:

1. The stock price follows a lognormal model. 1 0( = 0.
2. The current price is 100=Z-7 SO t A
3. The continuously compounded expected rate of return is 0.1. 7

4. The volatility is 0.2. /

A FEuropean call option on the stock expiring in one year has a strike price of 100. Calculate the expected
payoff on the call option.
Hint: N(0.00303) = 0.50121, N(0.21516) = 0.58518, N(0.4) = 0.65542 and N(0.6) = 0.72575




Exercise

A stock’s price follows a lognormal distribution. To simulate its price over 10 years, scenarios are generated.
In each scenario, the stock price at time ¢ is generated by generating a standard normal random variable Z.
Then S is set equal to Sy_1e%'+02% for t = 1,2,...,10.

S
Determine the expected value of the ratio % in this simulation.
0
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<= K-52

For 3-month 52-strike European call option on a stock, you are given:

Exercise

(i) The stock’s price follows the Black-Scholes framework.

(ii) The stock’s price is 50..—1_7 5

(iii) The stock’s volatility is 0.4.—p o>

(iv) The stock’s continuous dividend rate is 1%.—2—F s

(v) The continuously compounded risk-free interest rate is 8%.@ \8

Determine the premium of the option.
Hint: N(-0.04611)=0.48161, N(-0,24611)=0.40280, N(0,24611)=0.59720, N(0.04611)=0.51839.
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Exelf%? T:‘- /L[
For 3-month 52-strike European put option on a stock, you are given:

(i) The stock’s price follows the Black-Scholes framework.

/4

)
K (ii) The stock’s price is 504_7 So

(i) The stock’s volatility is 0.4.—p = (W}

(iv) The stock’s continuous dividend rate is 4%. =22 g.

(v) The continuously compounded risk-free interest rate is 8%..2 = r

Determine the premium of the option.
Hint: N(-0.04611)=0.48161, N(-0,24611)=0.40280, N(0,24611)=0.59720, N(0.04611)=0.51839.
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_\' =0.5
Exercise
A stock has quarterly dividends, paid at the end of 3 months and 6 months from now. You are given:
e The stock price is S = 42.
e Quarterly dividends are D = 0.75.
e The volatility of a prepaid forward on the stock is ¢ = 0.3.
e A 6-month European put option is written on the stock with strike price K = 40.
e The continuously compounded risk-free rate is r = 0.04.

Calculate the put option’s premium with the Black-Scholes formula.
Hint: N(—0.26149) = 0.39686, N (—0.04936) = 0.48032, N(—1.68221) = 0.04626, N(—1.73221) = 0.04162
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Exercise

You are given:
(i) The spot exchange rate for yen in dollars is 0.009.~7 *
(i) o = 0.05
(ii)
iv)

(iv) The continuously compounded risk-free rate for dollars is 4% ——e3p¥"

The continuously compounded risk-free rate for yen is 2% 2% S

Calculate the Black-Scholes price for a 1-year European dollar-denominated call option on yen with a strike

price of 0.010—p_g ¥
Hint: N (—0.26149) = 0.39686, N (—0.04936) = 0.48032, N (—1.68221) = 0.04626, N(—1.73221) = 0.04162

(a) 0.0000082
(

b) 0.0002082

)

)
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Exercise A F A/1 T /1/76-

A futures contract on silver has a price of 10 for delivery at the end of 1 year. Volatility is 0.25. The
continuously compounded risk-free rate is 4%@\’
Calculate the premium for a 1-year European call option on the futures contract with a strike price of 10.
Hint: N(0.125) = 0.54974, N(—0.125) = 0.45026, N(0.15) = 0.55962, N(—0.15) = 0.44038

a) 0.5558

(
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d

)
)
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Exercise 27 §=0

You are interested in purchasing a call option on a nondividend paying common stock that is currently trading

at a price of 100 per share. You are given the following information.

e The standard deviation of the continuously compounded annual rate of return on the stock is 0.4 -2+ G..

e The time to maturity of the call is 3 months.@ T=_4/Ll

Current share price
- - = —0.08
Present value of the exercises price

at the risk-free rate.

Calculate the price of a call option using Black-Scholes.
Hint: N(—0.3) = 0.38209, N(—0.5) = 0.30854, N(—0.80379) = 0.21076, N(—0.94813) = 0.17153
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