Test Canvas: Final The Test Canvas lets you add, edit, and reorder questions, as well as review a test. More Help Create Question Reuse Question **Upload Questions** **Question Settings** Description Instructions Total Questions 15 Total Points 15 Select: All None Select by Type: - Question Type - ∨ Delete **Points** Update Hide Question Details # ☐ 1. Multiple Choice: An insurer has data on losses for fou... Points: 1 Question An insurer has data on losses for four policyholders for seven years. X_{ij} is the loss from the ith policyholder for year j. You are given $$\sum_{i=1}^{4} \sum_{j=1}^{7} (X_{ij} - \overline{X_i})^2 = 40 \text{ and } \sum_{j=1}^{4} (\overline{X_j} - \overline{X})^2 = 4$$ Calculate Buhlman credibility factor for an individual policyholder using non-parametric empirical Bayes estimation. **Answer** 0.82 0.95 0.73 0.86 0.78 # ☐ 2. Multiple Choice: You are given the following distribut... Points: 1 | Question | You are given the following distribution: | | | | | | | |----------|---|-----|-----|--|--|--|--| | | | θ=0 | θ=1 | | | | | | | X=0 | 0.4 | 0.1 | | | | | | | X=1 | 0.1 | 0.2 | | | | | | | X=2 | 0.1 | 0.1 | | | | | For a given value of θ and sample size of 20 for X: $\sum_{i=1}^{20} x_i = 40$. Determine the Buhlman credibility premium. Answer 1.4 1.2 1.8 2 # ☐ 3. Multiple Choice: You are given: Claim size, X, has... Points: 1 Question You are given: - Claim size, X, has mean μ and variance 500, - The random variable μ has a mean of 1000 and variance 50. - The following four claims were observed: 500, 1000, 1500, 2000. Calculate the expected size of the next claim using Buhlman credibility. **Answer** 1071 1059 1035 1181 1223 ### ☐ 4. Multiple Choice: For portfolio of insurance risks, agg... Points: 1 #### Question For portfolio of insurance risks, aggregate losses per year per exposure follow a normal distribution with mean θ and standard deviation 1000, with θ varying by class as follows: | Class | θ | Percent
of
Risks
in
Class | |-------|------|---------------------------------------| | Х | 2000 | 60% | | Υ | 3000 | 30% | | Z | 4000 | 10% | A randomly selected risk has the following experience over three years: | Year | Number of Exposures | Aggregate
Losses | |------|---------------------|---------------------| | 1 | 30 | 24,000 | | 2 | 30 | 36,000 | | 3 | 40 | 28,000 | Calculate the Buhlman-Straub estimate of the mean aggregate losses per year per exposure in Year 4 for this risk. ### Answer 916 880 1138 2362 2500 | | noice: You are given n years of claim data o | |-------------|--| | Question | You are given n years of claim data originating from a large number of policies. Yo asked to use the Buhlman-Straub credibility model to estomate the expected number claims in year n+1. Which of the following conditions are required by the model? | | | I. All policies must have equal number of exposure units. | | | II. Each policy must have Poisson claim distribution. | | | III. There must be at least 1082 exposure unit. | | Answer | None of them | | | All of them | | | II and III | | | I and III | | | Only III | | | | | Multiple Ch | noice: You are given: Claim counts follo | | Multiple Cl | You are given: | | - | You are given: Claim counts follows Poisson distribution with mean θ. Claim sizes follow exponential distribution with mean 10θ. | | - | You are given: • Claim counts follows Poisson distribution with mean θ. | | - | You are given: Claim counts follows Poisson distribution with mean θ. Claim sizes follow exponential distribution with mean 10θ. Claim counts and claim sizes are independent given θ. | | - | You are given: Claim counts follows Poisson distribution with mean θ. Claim sizes follow exponential distribution with mean 10θ. Claim counts and claim sizes are independent given θ. PDF of prior distribution is π(θ)=5(θ⁻⁶), θ>1. | | Question | You are given: Claim counts follows Poisson distribution with mean θ. Claim sizes follow exponential distribution with mean 10θ. Claim counts and claim sizes are independent given θ. PDF of prior distribution is π(θ)=5(θ⁻⁶), θ>1. Calculate Buhlman's k for aggregate losses. | | Question | You are given: Claim counts follows Poisson distribution with mean θ. Claim sizes follow exponential distribution with mean 10θ. Claim counts and claim sizes are independent given θ. PDF of prior distribution is π(θ)=5(θ⁻⁶), θ>1. Calculate Buhlman's k for aggregate losses. | | Question | You are given: • Claim counts follows Poisson distribution with mean θ. • Claim sizes follow exponential distribution with mean 10θ. • Claim counts and claim sizes are independent given θ. • PDF of prior distribution is π(θ)=5(θ ⁻⁶), θ>1. Calculate Buhlman's k for aggregate losses. | ### ☐ 7. Multiple Choice: For a group of insureds you are given... Points: 1 Question For a group of insureds you are given: - The amount of a claim is uniformly distributed but will not exceed a certain unknown limit θ. - The prior distribution of θ is $\pi(\theta) = \frac{500}{\theta^2}$, $\theta > 500$. - Two independent claims of 400 and 600 are observed. Determine the probability that the next claim will exceed 500. **Answer** **0.375** 0.325 0.3125 0.3525 0.395 # ■ 8. Multiple Choice: You are given: Losses on ... Points: 1 Question You are given: - Losses on a company's insurance policies follow a Pareto distribution with probability density function: $f(x \mid \theta) = \frac{\theta}{(x + \theta)^2}$, $0 < x < \infty$. - For half of the company's policies θ = 1, while for the other half θ = 3. For a randomly selected policy, losses in Year 1 were 5. Determine the posterior probability that losses for this policy in Year 2 will exceed 8. **Answer** **0.21** 0.11 0.15 0.27 0.19 # ☐ 9. Multiple Choice: You are given: The prior distribu... Points: 1 #### Question You are given: • The prior distribution of the parameter Θ has probability density function: $$\pi(\theta) = \frac{1}{\theta^2}, \ 1 < \theta < \infty.$$ • Given $\Theta = \theta$, claim sizes follow a Pareto distribution with parameters $\alpha = 2$ and θ . A claim of 3 is observed. Calculate the posterior probability that Θ exceeds 3. **Answer** 0.33 0.50 0.56 0.66 # ☐ 10. Multiple Choice: You are given the following informati... Points: 1 Question You are given the following information about six coins: | Coin | Probability of Heads | |------|----------------------| | 1-4 | 0.5 | | 5 | 0.25 | | 6 | 0.75 | A coin is selected at random and then flipped repeatedly. X_i denotes the outcome of the i-th flip, where "1" indicates heads and "0" indicates tails. The following sequence is obtained; $$S = \{X_1, X_2, X_3, X_4\} = \{1, 1, 0, 1\}$$ Determine E(X₅ I S) using Bayesian analysis. Answer *...* 0.00 | | 0.5 | <i></i> | | | | | | | |--------------|--------------|----------|-------------------|---------------|---------------|---------------|---------|---| | | 0.5 | 51 | | | | | | | | | 0.5 | 58 | | | | | | | | | 0.6 | 31 | | | | | | | | | | | | | | | | | | . Multiple C | Choice: Y | ou ar | e given: E | Each risk | has at m | | | P | | Question | You are | e giver | า: | | | | | | | | • | | | | im each yea | r. | | | | | | Type of | Prior probability | Annual | | | | | | | • | Risk | probability | Probability | | | | | | | | <u> </u> | 0.7 | 0.1 | | | | | | | | II | 0.2 | 0.2 | | | | | | | | | | | | | | | | | | Ш | 0.1 | 0.4 | | | | | | | One ra | ındoml | y chosen ris | sk has three | claims durin | ng Years 1-6 | 6. | | | | Determ | nine th | e posterior p | orobability o | f a claim for | this risk for | Year 7. | | | Answer | ③ 0.2 | 28 | | | | | | | | | 0.2 | 21 | | | | | | | | | | | | | | | | | | | 0.3 | 33 | | | | | | | | | 0.3 | | | | | | | | \square 12. Multiple Choice: You are given: Xp =pure premium c... Points: 1 Question You are given: - X_D =pure premium calculated from partially credible data - $\mu = E[X_D]$ - Fluctuations are limited to ± kµ of the mean with probability P - Z = credibility factor Which ofthe following is equal to P? **Answer** $$Pr[1-k < ZX_p + (1-Z)\mu < 1+k]$$ $$Pr[Z\mu - \mu < ZX_D < Z\mu + \mu]$$ $$Pr[Z\mu - k < ZX_p < Z\mu + k]$$ $$Pr[\mu - k\mu < X_p < \mu + k\mu]$$ # □ 13. Multiple Choice: On an auto-collision coverage, you ar... Points: 1 #### Question On an auto-collision coverage, you are given: - The number of claims per year per individual has the following distribution: f(0)=0.7, f(1)=0.2 and f(2)=0.1. - Loss sizes are exponentially distributed with mean 1200. - Loss sizes and claim counts are independent. An ordinary deductible of 500 is applied to each loss. Calculate the probability that aggregate claim payments for a year will be greater than 150, using normal approximation. Answer **3** 0.57 0.52 0.59 0.61 0.51 | Loss sizes follow spliced distribution. The probability density function of this distribution below 200 is a multiple q of the probability density function of a exponential distribution with θ = 300. The probability density function above 200 is the same for an exponential distribution with θ = 400. Let X be loss size. Calculate $Pr(X<150)$ | |--| | ⊘ 0.32 | | 0.22 | | 0.27 | | 0.37 | | 0.42 | | | # 15. Multiple Choice: Thye number of claims on a homeowner'... | Question | Thye number of claims on a homeowner's policy has a binomial distribution with parameters m = 2 and q. The parameter q varies by policyholder and has a uniform distribution on [0,0.5]. Calculate the probability of no claims for a policy. | |----------|---| | Answer | ⊘ 0.58 | | | 0.55 | | | 0.51 | | | 0.45 | | | 0.61 | | | | Select: All None Select by Type: - Question Type - ✓ | Delete Points | Update Hide Question Details | | |---------------|------------------------------|------| | | | | | | | ← OK |