AS484 Term 222

Midterm

Duration: 150 minutes

Name:	ID:

- 1. Only SOA approved calculators are allowed.
- 2. This exam has 15 questions.
- 3. Show all of your work. Points will be deducted for results without work.
- 4. Write clearly. Justify every step in the calculations. You may lose points just writing the equation or results.
- 5. No credits will be given to wrong steps.

Questions

- 1. [5 points] The unlimited severity distribution for claim amounts under an auto liability insurance policy is given by the cumulative distribution: $F(x) = 1 0.8 e^{-0.02x} 0.2 e^{-0.001x}$, x >0. Calculate expected payment for one claim.
- 2. [5 points] The random variable X has pdf f(x) = 0.02x, if 0 < x < 10. Calculate mean and variance of $(X-5)_+$
- 3. [5 points] A random loss is uniformly distributed on (0,100). The premium of an ordinary insurance with deductible 10 is calculated by expected claim plus 15. The premium of a complete insurance is calculated by expected claim times k. If two premiums are equal. Determine k.
- 4. [5 points] Suppose X has uniform distribution on [0,1000]. Calculate x satisfying e(600) = 2 e(x), where e(x) is the mean excess loss function.
- 5. [5 points] Losses X follow Weibull distribution with $\tau = 2$, $\theta = 1000$. Calculate VaR_{0.90} (X).
- 6. [5 points] X follows a Beta distribution with θ = 100, a = 2 and b =1. Calculate TVaR_{0.90}(X).
- [10 points] X follows normal distribution. TVaR_{0.5}(X) = 67.55, TVaR_{0.8}(X) = 80.79. Find TVaR_{0.9}(X).
- 8. [5 points] The distribution of X is a two point mixture:
 - a. With probability 0.6, X has two parameter Pareto distribution $\alpha = 2$, $\theta = 100$.
 - b. With probability 0.4, X has two parameter Pareto distribution $\alpha = 4$, $\theta = 3000$. Calculate S(200).
- 9. [10 points] An insurance company sells hospitalization reimbursement insurance. You are given:
 - a. Benefit payment for a standard hospital stay follows a lognormal distribution with μ = 7, σ =2.
 - b. Benefit payment for a hospital stay due to an accident is twice as much as the standard benefit.
 - c. 25% of all hospitalizations are for accidental causes.

Calculate the probability that benefit payment exceeds 10,000.

10. [5 points] Examine the tail of the Gamma distribution by looking at the hazard rate function. $(\alpha < 1)$.

- 11. [10 points] You are given:
 - a. A portfolio consists of 75 liability risks and 25 property risks.
 - b. The risks have identical claim count distribution.
 - c. Loss sizes for liability risks follow a Pareto distribution with parameters θ = 300, α =4.
 - d. Loss sizes for property risks follow a Pareto distribution with parameters θ = 1000, α =3.

Determine the variance of the claim size distribution for this portfolio for a single claim.

- 12. [5 points] A loss distribution is a two component spliced model using Weibull distribution with θ = 1500 and τ = 1 for losses up to 4000, and a Pareto distribution with θ = 12000 and α =2 for losses 4000 and greater. The probability that losses are less than 4000 is 0.6. Calculate the probability that losses are less than 25000.
- 13. [5 points] You are given:
 - a. In 1998, claim sizes follow a Pareto distribution with parameters θ (unknown), α =2.
 - b. Inflation of 6% affects all claims uniformly from 1998 and 1999.
 - c. r is the ratio of the proportion of claims that exceed d in 1999 to the proportion of claims that exceed d in 1998.

Determine the limit of r as d goes to infinity.

- 14. [10 points] Let N have Poisson distribution with mean Λ . Let Λ have a gamma distribution with mean 1 and variance 2. Determine the unconditional probability that N = 1.
- 15. [10 points] Given a value of $\Theta = \theta$, the random variable X has an exponential distribution with hazard rate function $h(x) = \theta$, a constant. The random variable Θ has uniform distribution on the interval (1,11). Determine S_x(0.5) for the unconditional distribution.