King Fahd University of Petroleum and Minerals

Department of Mathematics

AS 491 Exam-2- — Term 222 Sunday, April 02, 2022

Allowed Time: 90 minutes

Instructor: Dr. Boubaker Smii

Name: _____

ID #: _____

Section #: _____

Serial Number: _____

Instructions:

1. Write clearly and legibly. You may lose points for messy work.

2. Show all your work. No points for answers without justifications !

Question #	Grade	Maximum Points
1		12
2		10
3		09
4		09
5		12
6		08
Total:		60

<u>Exercise 1:</u>(12) Consider the standard Brownian motion $\{B_t, t \ge 0\}$.

A)- Verify that $C_t = t B_{\frac{1}{t}}, t > 0; C_0 = 0$, is also a Brownian motion.

B)- Let $X_t = \mu t + \sigma B_t$, $\sigma > 0$, $\mu \in \mathbb{R}$. i)- Find the expectation and variance of X_t .

ii)- What kind of stochastic process is then $X_t \ ?$

iii)-What determines the quantity $\ \mu t$ in the process X_t ?

Exercise 2:(10)

Let $\{B_t, t \ge 0\}$ be the standard Brownian motion.

A)- Consider the stochastic process $X_t = B_t - t B_1$, $0 \le t \le 1$. a) What is called the process X_t ?

b)Find $\mathbb{E}(X_t)$ and $\operatorname{Var}(X_t)$.

B)- Let $\{Y_t, t \ge 0\}$ be a stochastic process which satisfies: $Y_t = 1 + 0.2t + 0.5B_t$. Find $\mathbf{P}[Y_{10} > 1 \mid Y_0 = 1]$.

(Express the result as $\Phi(x)$, where Φ is the standard normal distribution function and x a real number.)

Exercise 3:(09) Consider the geometric Brownian motion given by

$$X_t = e^{\mu t + \sigma B_t}, \ t \ge 0, \ \sigma > 0, \ \mu \in \mathbb{R}.$$
 (a)

A)-1- Give an application where we can use the geometric Brownian motion X_t .

2- Explain why the classical integration fails to integrate the Brownian sample paths.

B)- We assume that the price $X_t, t \ge 0$ of a risky asset (called stock) at time t is given by a geometric Brownian motion of the form:

$$X_t = X_0 e^{\mu t + \sigma B_t}, \quad (\mu = c - \frac{1}{2}\sigma^2), \quad t \ge 0, \ \sigma > 0, \ \mu \in \mathbb{R}.$$
 (b)

1- What represent the quantity $c dt + \sigma dB_t$ during the period time [t, t + dt]?

2- Give a brief description of the following :

a-
$$\sigma dB_t$$
:

b- The constant c:

 $\frac{\textbf{Exercise 4:}(09)}{\text{Let } \{B_t, t \ge 0\} \text{ be the standard Brownian motion }.$

1. Find
$$\int_0^t B_s \, dB_s$$
 .

2. Find
$$\int_0^t B_s^2 dB_s$$
.

3. Find e^{B_t} .

Exercise 5: (12)

In the following B(t), $B_1(t)$ and $B_2(t)$ are standard Brownian motion.

A- Let $X_t = e^{B_1(t)} \cos(B_2(t)), \ Y_t = e^{B_1(t)} \sin(B_2(t)), \ Z_t = e^{B_1(t)}.$

Write down dX_t , dY_t and dZ_t as $\alpha Y_t + \beta X_t + aZ_t$, $\gamma X_t + \eta Y_t + bZ_t$ and $\delta Z_t + cX_t + dY_t$ respectively. (Here α , β , γ , η , δ , a, b, c, d) are coefficients to be determined !

B- The Black-Scholes-Merton model for growth with uncertain rate of return, is the value of $\S1$ after time *t*, invested in a saving account. It is described by the following stochastic differential equation:

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \ \mu, \sigma > 0 \tag{c}$$

1- Give the type of the SDE (c).

2- Verify that the solution of the SDE (c) is given by a Geometric Brownian motion.

Exercise 6: (08)

Let $\overline{\{B_t, t \ge 0\}}$ be the standard Brownian motion . A- Find the Itô process $X(t) = X_t, t \ge 0$ which verify the Stochastic differential equation:

$$dX_t = \frac{1}{2} X_t \, dt + X_t \, dB_t. \tag{d}$$

B- Verify that the process $X_t = \frac{B_t}{1+t}$ solves the Stochastic differential equation:

$$dX_t = -\frac{1}{1+t} X_t dt + \frac{1}{1+t} dB_t; \quad X_0 = 0$$
 (e)