King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Comprehensive Exam Syllabus MATH 521: General Topology I

Course Description: Basic Set Theory (countable and uncountable sets, cartesian products). Topological spaces (basis for a topology, product topology, functions, homeomorphisms, standard examples). Connected spaces, path connectedness. Compact spaces, compactness in metrizable spaces. Countability axioms, first countable and second countable spaces. Separation axioms, Urysohn's Lemma, Urysohn's metrization theory. Complete metric spaces.

Prerequisite: Graduate Standing

Main Reference: J. Munkres, *Topology*, 2nd edition, Pearson Education Limited (2014).

(Section: 1-7, 12-21, 23-27, 30-34, 43 & 45).

Additional References:

- P. L. Shick, *Topology, Point-Set and Geometric*, Wiley (2007).
- S. Willard, *General Topology*, Dover Publications (2004).
- L. A. Steen, *Counterexamples in Topology*, Dover Publications (1995).

Торіс	Details
Set Theory and Logic	Fundamental Concepts, Functions, Relations, The Integers
	and the Real Numbers, Cartesian Products, Finite Sets,
	Countable and Uncountable Sets
Topological Spaces and	Topological Spaces, Basis for a Topology, The Order
Continuous Functions	Topology, The Product Topology on $X \times Y$, The Subspace
	Topology, Closed Sets and Limit Points, Continuous
	Functions, The Product Topology, The Metric Topology
Connectedness and Compactness	Connected Spaces, Path Connected Spaces, Connected
	Subspaces of the Real Line, Components and Local
	Connectedness, Compact Spaces, Limit Point Compactness
Countability and Separation	The Countability Axioms, The Separation Axioms, Normal
Axioms	Spaces, The Urysohn's Lemma, The Urysohn's Metrization
	Lemma
Complete Metric Spaces and	Complete Metric Spaces, Compactness in Metric Spaces
Function Spaces	