King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 514 Comprehensive Exam-2

Time Allowed: 180 Minutes

Name: ID#:

- Mobiles and calculators are not allowed in this exam.
- Write neatly and clearly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Q.1 (10 points) Evaluate the integral \int^{∞} $-\infty$ $x \sin(\pi x)$ $\frac{x \sin(x)}{(x^2+4)(x^2+9)}dx$ Q.2 (10 points) Use Laplace transform to solve the integral equation

$$
f(t) = t \sin(t) + 2 \int_{0}^{t} f'(\tau) \sin(t - \tau) d\tau, \quad f(0) = 0
$$

Q.3 (10 points) Use Laplace transform to solve the wave equation

$$
a^2 u_{xx} = u_{tt} + b \sin(2t), \ x > 0, \ t > 0
$$

under the following conditions

$$
u(x,0) = 0, \quad u_t(x,0) = 0, \quad x > 0
$$

and

$$
u(x,0) = 0 \quad \lim_{x \to \infty} |u(x,t)| < \infty
$$

Q.4 (10 points) Solve the integral equation for $f(x)$ using the Fourier transform

$$
\int_{-\infty}^{\infty} f(t)f(x-t)dt = \frac{1}{x^2 + a}.
$$

Q.5 (13 points) Use appropriate Fourier transform to solve the Laplace equation

$$
u_{xx} + u_{yy} = 0, \ x > 0, \ y > 0
$$

under the following conditions $u(0, y) = k$, $y > 0$ and $u(x, 0) = 0$, $x > 0$. Solution is bounded as $x \to \infty$.

 ${\bf Q.6}$ (6+6 points) Use Mellin transform to show the following:

(a)
$$
\mathcal{M}\lbrace x^m e^{-nx} \rbrace = \frac{\Gamma(m+p)}{n^{m+p-1}}
$$

(b) $\mathcal{M}\lbrace \frac{1}{x^2+1} \rbrace = \frac{\pi}{2} \csc\left(\frac{p\pi}{2}\right)$

Q.7 (10 points) Show the Hankel transform

$$
\mathcal{H}_o\{(a^2 - r^2)H(a - r)\} = \frac{4a}{\alpha^3}J_1(a\alpha) - \frac{2a^2}{\alpha^2}J_0(a\alpha)
$$

Q.8 (10 points) Find a solution $\Phi(x, y)$ of the Laplace equation

$$
u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, \quad y > 0
$$

under the condition $\lim_{y\to 0^+}$ $\sqrt{ }$ \int \mathcal{L} T_o $x < -1$ T_1 |x| < 1 T_2 $x > 1$. Hint: Use Poisson's formula. Q.9 (15 points) Solve the integral equation using Wiener-Hopf technique

$$
\int_{0}^{\infty} e^{-|x-\xi|} u(\xi) d\xi = -\frac{1}{4} u(x) + 1, \ \ 0 < x < \infty.
$$

 $u(x)$ is bounded as $x \to \infty$.

.