King Fahd University of Petroleum & Minerals **Department of Mathematics & Statistics** Comprehensive Exam-2 Math 514

Time Allowed: 180 Minutes

Name: _____ ID#: _____

- Mobiles and calculators are not allowed in this exam.
- Write neatly and clearly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question $\#$	Marks	Maximum Marks
1		10
2		10
3		10
4		10
5		13
6		12
7		10
8		10
9		15
Total		100

Q.1 (10 points) Evaluate the integral $\int_{-\infty}^{\infty} \frac{x \sin(\pi x)}{(x^2+4)(x^2+9)} dx$

 $\mathbf{Q.2}$ (10 points) Use Laplace transform to solve the integral equation

$$f(t) = t\sin(t) + 2\int_{0}^{t} f'(\tau)\sin(t-\tau)d\tau, \quad f(0) = 0$$

 $\mathbf{Q.3}$ (10 points) Use Laplace transform to solve the wave equation

$$a^2 u_{xx} = u_{tt} + b\sin(2t), \ x > 0, \ t > 0$$

under the following conditions

$$u(x,0) = 0, \quad u_t(x,0) = 0, \quad x > 0$$

and

$$u(x,0) = 0 \quad \lim_{x \to \infty} |u(x,t)| < \infty$$

Q.4 (10 points) Solve the integral equation for f(x) using the Fourier transform

$$\int_{-\infty}^{\infty} f(t)f(x-t)dt = \frac{1}{x^2 + a}.$$

Q.5 (13 points) Use appropriate Fourier transform to solve the Laplace equation

$$u_{xx} + u_{yy} = 0, \ x > 0, \ y > 0$$

under the following conditions u(0, y) = k, y > 0 and u(x, 0) = 0, x > 0. Solution is bounded as $x \to \infty$.

 ${\bf Q.6}$ (6+6 points) Use Mellin transform to show the following:

(a)
$$\mathcal{M}\left\{x^{m}e^{-nx}\right\} = \frac{\Gamma(m+p)}{n^{m+p-1}}$$

(b) $\mathcal{M}\left\{\frac{1}{x^{2}+1}\right\} = \frac{\pi}{2}\csc\left(\frac{p\pi}{2}\right)$

 $\mathbf{Q.7}$ (10 points) Show the Hankel transform

$$\mathcal{H}_{o}\{(a^{2}-r^{2})H(a-r)\} = \frac{4a}{\alpha^{3}}J_{1}(a\alpha) - \frac{2a^{2}}{\alpha^{2}}J_{0}(a\alpha)$$

Q.8 (10 points) Find a solution $\Phi(x, y)$ of the Laplace equation

$$u_{xx} + u_{yy} = 0, \quad -\infty < x < \infty, \quad y > 0$$

under the condition $\lim_{y\to 0^+} = \left\{ \begin{array}{ll} T_o & x < -1 \\ T_1 & |x| < 1 \\ T_2 & x > 1 \end{array} \right.$ Hint: Use Poisson's formula.

 $\mathbf{Q.9}$ (15 points) Solve the integral equation using Wiener-Hopf technique

$$\int_{0}^{\infty} e^{-|x-\xi|} u(\xi) d\xi = -\frac{1}{4} u(x) + 1, \quad 0 < x < \infty.$$

u(x) is bounded as $x \to \infty$.

•