King Fahd University of Petroleum and Minerals Department of Mathematics Qualifying Exam-Real Analysis - Term 221 Time:180 Minutes

Notation: \mathbb{R} = the real numbers, \mathbb{N} = the natural numbers, m = Lebesgue measure, m^* = Lebesgue outer measure.

Instructions: Solving (Completely and correctly) six problems will result in a passing grade.

Justify your answers thoroughly. For any theorem that you wish to cite, you should give its name and its statement.

Let *C* be a Lebesgue measurable set satisfying $m^*(C\Delta D) = 0$ for a given set *D*. Here $C\Delta D = (C \cap D^c) \cup (D \cap C^c)$. Show that *D* is measurable.

Show that if *f* is a non-negative measurable function on *E*, then f = 0 a.e. on *E* is equivalent to $\int_E f = 0$.

We define
$$f : [0,1] \longrightarrow \mathbb{R}$$
 by $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$
Find $m \{x : f(x) \ge 0\}.$

Exercise 4 Evaluate with proof

$$\lim_{n\to\infty}\int_0^n\frac{\cos\left(\frac{x}{n}\right)}{1+x}dx.$$

Suppose that *f* is finite on [*a*, *b*] and is of bounded variation on every interval $[a + \varepsilon, b]$, for $\varepsilon > 0$, with $TV(f_{[a+\varepsilon,b]}) \le M < +\infty$.

- 1. Show that $TV(f_{[a,b]}) < +\infty$.
- 2. Is $TV(f_{[a,b]}) \leq M$? If not what additional assumptions will make it so?

Let *f* and each f_n be integrable on *E*. If $\lim_{n\to\infty} \int_{E}^{\infty} |f_n - f| = 0$, show that $(f_n) \longrightarrow f$ in measure on *E*.

Let $\{f_n\}_{n=1}^{\infty}$ be measurable on [0,1]. Show that if $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable on [0,1], then there exists a constant $C < \infty$ such that $\int_{[0,1]} |f_n| \le C$, for all $n \ge 1$.

Exercise 8 Prove that if $f \in L^1(\mathbb{R})$, then $\lim_{n\to\infty} \int_{|x|\ge n} |f(x)| = 0$. Demonstrate that it is not necessarily the case that $f(x) \to 0$ as $|x| \to \infty$.