PhD Comprehensive Exam

Duration: 180 minutes

ID:	
NAME:	

Problem	Score
1	
2	
3	
4	
5	
7	
6	
8	
Total	/100

- Show your work.
- There are empty pages attached to this exam booklet.

Prove that the union of a finite collection of measurable sets is measurable.

Prove that if a σ -algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞) , then it contains all intervals.

A function *f* is said to be **Borel measurable** provided its domain *E* is a Borel set and for each α , the set $\{x \in E \mid f(x) > \alpha\}$ is a Borel set. Show that

- (a) every Borel measurable function is Lebesgue measurable,
- (b) if *f* is Borel measurable and *B* is a Borel set, then $f^{-1}(B)$ is a Borel set.

Prove that

$$\lim_{n \to \infty} \int_0^1 (n+1) x^n \sin^{-1} x \ dx = \frac{\pi}{2}.$$

Let $f : [a, b] \longrightarrow [m, M]$ be an absolutely continuous function and $g : [m, M] \longrightarrow \mathbb{R}$ be Lipchitz. Show that $h = g \circ f$ is absolutely continuous on [a, b].

- (a) Let $1 \leq p < q < r < \infty$. Show that $L^p(\mathbb{R}) \cap L^r(\mathbb{R}) \subseteq L^q(\mathbb{R})$.
- (b) Prove or give a counterexample for the following:

Suppose that $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ is Lebesgue measurable for each n such that $||f_n||_3 \to 0$ and $||f_n||_5 \to 0$ as $n \to \infty$, then we have $||f_n||_4 \to 0$.

Let $\{f_n\}_{n=1}^{\infty}$ be measurable on [0, 1]. Show that if $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable on [0, 1], then there exists a constant $C < \infty$ such that $\int_{[0,1]} |f_n| \le C$, for all $n \ge 1$.

Evaluate

$$\lim_{n\to\infty}\int_0^n\frac{\cos\left(\frac{x}{n}\right)}{1+x}dx.$$