PHD COMPREHENSIVE EXAM

Duration: 180 minutes

ID:	
NAME:	

- Justify your answers thoroughly. For any theorem that you wish to cite, you should give its name and its statement.
- Instructions: Solving (Completely and correctly) six problems will result in a passing grade.

Problem	Score
1	
2	
3	
4	
5	
7	
6	
8	
Total	/100

Let $f : [0,1] \longrightarrow [0,1]$ be measurable. Show that

$$\lim_{n \to \infty} \int_0^1 \frac{1+n}{1+nf(x)} dx = \int_0^1 \frac{1}{f(x)} dx.$$

Let *f* and *g* be nonnegative functions in $L^1(\mathbf{R})$ and measurable on the interval [0, 1]. In addition, suppose that $f(x) \circ (x) > 1$ for all $x \in [0, 1]$

Show that

$$f(x)g(x) \ge 1$$
 for all $x \in [0,1]$.

$$\left(\int_{[0,1]} f(x)\right) \left(\int_{[0,1]} g(x)\right) \ge 1.$$

Let *f* be a nonnegative measurbale function on [0, 1] such that for all integers $n \ge 1$, we have $\int_{[0,1]} f^n \le \frac{2^n}{n^2}$. Show that f(x) < 2 for a.e. $x \in [0,1]$.

Let μ and ν be measures on the measurable space (X, \mathcal{M}) . For $E \in \mathcal{M}$, define $v(E) = \max{\{\mu(E), \nu(E)\}}$. Is v a measure on (X, \mathcal{M}) ?

Let *f* and *g* be nonnegative measurable functions on *X* for which $g \le f$ a.e. on *X*. Show that f = g a.e. on *X* if and only if $\int_X g d\mu = \int_X f d\mu$.

Let $\{f_n\}_n$ be a sequence of functions in $L^2([0,1])$ satisfying $||f_n||_2 \leq M$ for all $n \geq 1$. In addition, suppose that $\{f_n\}_n \to f$ almost everywhere on [0,1]. Show that $f \in L^2([0,1])$ with $||f||_2 \leq M$

Suppose that $\{f_n\}$ is bounded in $L^1[0, 1]$. Is $\{f_n\}$ uniformly integrable over [0, 1]?

Let *f* and each f_n be integrable on *E*, for any $n \ge 1$. If $\lim_{n \to \infty} \int_E |f_n - f| = 0$, show that $(f_n) \longrightarrow f$ in measure on *E*.