PHD COMPREHENSIVE EXAM

Duration: 180 minutes

o Justify your answers thoroughly. For any theorem that you wish to cite, you should give its name and its statement.

Let E have finite outer measure. Show that E is measurable if and only if for each open, bounded interval (a, b) , $b - a = m^*((a, b) \cap E) + m^*((a, b) \sim E)$.

- (a) For the function f and the set F in the statement of Lusin's Theorem, show that the restriction of f to F is a continuous function.
- (b) Prove the extension of Lusin's Theorem to the case that f is not necessarily real-valued, but may be finite a.e.

Let $\{f_n\}$ be a sequence of integrable functions on E for which $f_n \to f$ a.e. on E and f is integrable over E. Show that $\int_E |f - f_n| \to 0$ if and only if $\lim_{n\to\infty} \int_E |f_n| = \int_E |f|$. (Hint: Use the General Lebesgue Dominated Convergence Theorem.)

Consider the sequence of functions

$$
f_n(x) = \left(1 + \frac{x}{n}\right)^n.
$$

(a) For all $n \ge 1$ and $x > -n$, show that f_n is monotone increasing and that

 $f_n(x) \leq e^x$.

(b) Evaluate

 $\lim_{n\to\infty}\int_0^n f_n(x)e^{-5x}dx.$

If f is continuous on [a, b] and f' exists and is bounded on (a, b) , then show that f is absolutely continuous on $[a, b]$.

Assume E has finite measure and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence of measurable functions that converge pointwise a.e. on E to f. For $1 \le p < \infty$, show that $\{f_n\} \to f$ in $L^p(E)$ if there is $\alpha > 0$ such that $\{f_n\}$ belongs to and is bounded as a subset of $L^{p+\alpha}(E)$.

 $\overline{\mathbf{7}}$

Let (X, \mathcal{M}, μ) be a measure space and $\{h_n\}$ be a sequence of nonnegative integrable functions on *X*. Suppose that $\{h_n(x)\}\to 0$ for almost all $x \in X$. Show that

$$
\lim_{n\to\infty}\int_X h_n\,d\mu=0
$$

if and only if $\{h_n\}$ is uniformly integrable and tight over X.

Let $\mathbb N$ be the set of natural numbers, and let $\mathcal M=2^{\mathbb N}$ and c be the counting measure by setting $c(E)$ equal to the number of points in E if E is finite and ∞ if E is infinite. Let $(X, \mathcal{A}, \mu) =$ $(Y, B, v) = (N, M, c)$. Define $f : N \times N \rightarrow \mathbb{R}$ by

$$
f(x,y) = \begin{cases} 2 - 2^{-x} & \text{if } x = y, \\ -2 + 2^{-x} & \text{if } x = y + 1, \\ 0 & \text{otherwise.} \end{cases}
$$

(a) Show that f is measurable with respect to the product measure $c \times c$.

(b) Show that

$$
\int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m, n) d c(m) \right] d c(n) \neq \int_{\mathbb{N}} \left[\int_{\mathbb{N}} f(m, n) d c(n) \right] d c(m).
$$

(c) Is this a contradiction either of Fubini's theorem or Tonelli's theorem ?

 $\bar{\chi}$

 α