PHD COMPREHENSIVE EXAM

Duration: 180 minutes

ID:	
NAME:	

Problem	Score
1	
2	
3	
4	
5	
7	
6	
8	
Total	/100

• Justify your answers thoroughly. For any theorem that you wish to cite, you should give its name and its statement.

1

Show that a set *E* is measurable if and only if for every $\varepsilon > 0$, there exists a closed set *F* and open set \mathcal{O} for which $F \subseteq E \subseteq \mathcal{O}$ and $m^*(\mathcal{O} \sim F) \leq \varepsilon$.

Assume that *E* is a set of finite measure. Let $\{f_n\}$ be a sequence of measurable functions on *E* that converges pointwise on *E* a.e. to a real-valued function *f* that is finite a.e. Show that the conclusion of Egoroff's Theorem still holds.

Consider two Lebesgue integrable functions f and g over \mathbb{R} and two sequences of Lebesgue integrable functions $\{f_n\}$ and $\{g_n\}$ over \mathbb{R} . Assume that

(i) $\{f_n\}$ converges to f pointwise a.e. on \mathbb{R} ,

(ii) $\{g_n\}$ converges to *g* pointwise a.e. on \mathbb{R} ,

(iii)
$$|f_n| \leq g_n$$
 a.e. on \mathbb{R} and

(iv)
$$\int_{\mathbb{R}} g_n$$
 converges to $\int_{\mathbb{R}} g$.

Show that

$$\lim_{n\to\infty}\int_{\mathbb{R}}f_n=\int_{\mathbb{R}}f$$

Consider the sequence of functions

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n.$$

(a) For all $n \ge 1$ and x > -n, show that f_n is monotone increasing and that

 $f_n(x) \leq e^x$.

(b) Evaluate

$$\lim_{n\to\infty}\int_0^n f_n(x)e^{-3x}dx.$$

/Department of Mathematics

Let the function f be absolutely continuous on [a, b]. Show that f is Lipschitz on [a, b] if and only if there exists M > 0 such that $f'(x) \le M$ a.e. on [a, b].

Let *E* be a measurable set and $1 \le p < \infty$ and $f_n \to f$ in $L^p(E)$.

- (a) If the Lebesgue measure, *m*, of *E* is finite that is $m(E) < \infty$, show that $f_n \to f$ in $L^s(E)$ for some $1 \le s < p$.
- (b) If $f_n \to f$ a.e on *E* and there exists a real number *M* such that $|f_n| \leq M$ a.e. for all *n*, show that $f_n \to f$ in $L^r(E)$ for some *r* such that $1 \leq p < r < \infty$.

Let (X, \mathcal{M}, μ) be a measure space and $\{h_n\}$ be a sequence of nonnegative integrable functions on X. Suppose that $\{h_n(x)\} \to 0$ for almost all $x \in X$. Show that

$$\lim_{n\to\infty}\int_X h_n\,d\mu=0$$

if and only if $\{h_n\}$ is uniformly integrable and tight over X.

Let X = Y be the interval [0, 1] with A = B the class of Borel sets. Let $\mu = \nu$ be the Lebesgue measure. Consider the function f on $X \times Y$ defined as

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad (x,y) \in X \times Y.$$

(a) Show that

$$\int_X \int_Y f d\mu d\nu \neq \int_Y \int_X f d\nu d\mu.$$

(b) Does part (a) contradict Fubini's theorem? why?