King Fahd University of Petroleum and Minerals Department of Mathematics

Comprehensive Exam- Math 533 Complex Analysis 1 September 2021

Duration: 150 minutes

Name: _

This exam contains 8 pages (including this cover page) and 7 questions. Total of points is 100.

Points	Score
15	
20	
10	
10	
15	
15	
15	
100	
	15 20 10 10 15 15 15

Distribution of Marks

1. (a) (15 points) Find all entire functions f such that

 $|f(z)| \le |z|^{2/3}$, for all $z \in \mathbb{C}$.

- 2. (a) (5 points) Let *f* be an entire function such that $|\text{Im } f(z)| < \pi$ for all $z \in \mathbb{C}$. Show that *f* is constant.
 - (b) (5 points) Show that there is no nonconstant entire function *g* such that $g(\mathbb{C}) \subset \mathbb{C} \setminus \{x \in \mathbb{R} : x \leq 0\}.$
 - (c) (10 points)
 - (i) Show that $T(z) = \frac{z-1}{z+1}$ maps $\mathbb{C} \setminus [-1,1]$ onto $\mathbb{C} \setminus \{x \in \mathbb{R} : x \le 0\}$.
 - (ii) Show that if *h* is an entire function such that $h(\mathbb{C}) \subset \mathbb{C} \setminus [-1, 1]$, then *h* is a constant.

3. (10 points) Describe all entire functions f such that

 $|f(z)| \le |\sin(z)|$ for all $z \in \mathbb{C}$.

- 4. Suppose that $f : \Delta \to \Delta$ is analytic on the open unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and continuous on |z| = 1 such that f(0) = f(a) = 0, where $a \in \Delta$, and $a \neq 0$.
 - (a) (5 points) Show that $|f'(0)| \le |a|$. (Hint: Consider $z\varphi_a(z)$, where $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$)
 - (b) (5 points) Find *f*, if |f'(0)| = |a|.

5. (a) (10 points) Let \mathscr{C} be a simply closed, positively oriented contour and f be an analytic function inside and on \mathscr{C} . Assume that f does not vanish on \mathscr{C} . Let $\{a_1, \ldots, a_N\}$ be the zeros of f inside \mathscr{C} (counted with multiplicities). Show that

$$\frac{1}{2\pi i}\int_{\mathscr{C}}\frac{zf'(z)}{f(z)}\,dz=a_1+\ldots+a_N.$$

(b) (5 points) Application: Let $n \in \mathbb{N}$, $n \ge 2$. Find

$$\oint_{|z|=2} \frac{z^n}{z^n-1} dz$$

6. Let $n \in \mathbb{N}$, $n \ge 1$ and $\alpha \in (-1, 1)$, with $\alpha \ne 0$.

(a) (10 points) Compute
$$\int_{0}^{2\pi} \frac{e^{in\theta}}{(e^{i\theta} - \alpha)(e^{-i\theta} - \alpha)} d\theta$$

(b) (5 points) Deduce $I = \int_{0}^{2\pi} \frac{\cos n\theta}{1 - 2\alpha\cos\theta + \alpha^2} d\theta$.

7. (15 points) Let $f(z) = z^6 - 2z + 4$. Show that all the zeros of f lie on the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$.