King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables I Comprehensive Exam – Term 212

Justify your answers thoroughly. For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

Compute

$$\int_0^{2\pi} \frac{\cos\theta}{\cos\theta - i} \, d\theta$$

Let f and g be polynomials with $\deg(g) > \deg(f) + 1$.

(a) Show that
$$\lim_{R\to\infty} \int_{|z|=R} \frac{f(z)}{g(z)} dz = 0.$$

(b) Use (a) to show that the sum of the residues of $\frac{f}{g}$ at all its poles is zero.

Let f and g be two entire functions such that

$$|f(z)| \le |g(z)|$$
 for all $z \in \mathbb{C}$.

Show that f = cg, for some constant $c \in \mathbb{C}$ with $|c| \leq 1$.

Let \mathbb{D} be the unit disc and $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}.$

- (a) Show that the function $\varphi : \mathbb{H} \to \mathbb{D}$ defined by $\varphi(z) = \frac{z-i}{z+i}$ is an analytic bijection with an analytic inverse.
- (b) Let $f : \mathbb{D} \setminus \{0\} \to \mathbb{H}$ be an analytic function. Study the nature of its singularity at zero.

Let *f* be an analytic function on a nonempty open connected set $\Omega \subset \mathbb{C}$. Let $a \in \Omega$ be a local minimum of |f|.

- (a) Prove that either f(a) = 0 or f is constant on Ω .
- (b) Prove or disprove that there exists an analytic function f on the unit disc \mathbb{D} such that $|f(z)|^2 = |z|^2 + 1$ for all $z \in \mathbb{D}$.

Let (f_n) be a sequence of analytic functions inside and on |z| = 1. Suppose that f_n converges uniformly to f inside and on |z| = 1.

Show if *f* has no zeros on |z| = 1, then the number of zeros of *f* inside |z| = 1 is equal to the number of zeros of f_n inside |z| = 1 for sufficiently large *n*.

Let $\Omega \subset \mathbb{C}$ be a *bounded domain* and let

 $f:\Omega\to\Omega$

be an analytic function. Suppose that $f(z_0) = z_0$ for a point z_0 in Ω . Let

$$f_n := \underbrace{f \circ f \circ \cdots \circ f}_{n\text{-times}}$$

- (a) Prove by induction that $(f_n)'(z_0) = (f'(z_0))^n$, for all $n \ge 1$.
- (b) Prove that $|(f_n)'(z_0)| \leq C$ for all $n \geq 1$, for some constant *C*.
- (c) Deduce that $|f'(z_0)| \leq 1$.
- (d) In addition, assume that f is an automorphism of Ω . What is the value of $|f'(z_0)|$?