King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables Comprehensive Exam – Term 231

Justify your answers thoroughly. For any theorem that you wish to cite, you should either give its name or a statement of the theorem.

1. (20 points)

Let $H = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ be the upper half plane. Prove the following

- (a) If $\alpha \notin H$ and $\beta \in H$, then $\frac{1}{\alpha \beta} \in H$.
- (b) For any $\xi_1, \ldots, \xi_k \in H$, $\xi_1 + \ldots + \xi_k \in H$, in particular, $\xi_1 + \ldots + \xi_k \neq 0$.
- (c) Let *P* be a polynomial with zeros z_1, \ldots, z_k (possibly repeated)

$$\frac{P'(z)}{P(z)} = \frac{1}{z - z_1} + \ldots + \frac{1}{z - z_k}.$$

(d) Using the previous questions, prove the following:" Let *P* be a polynomial. Suppose all the zeros of *P* lie in *H*. Then all the zeros of *P*' also lie in *H*".

2. (15 points)

Let f be an analytic function on $\Omega=\{z\in\mathbb{C}:|z|<4\}.$ Suppose that |f(z)|<1 on $\Omega.$ Let

$$g(z) = f(z) + z - 2.$$

- (a) Prove that all the zeros of g lie in the disc $D = \{z \in \mathbb{C} : |z 2| < 1\}.$
- (b) Using Rouché theorem, prove that g has only one zero inside Ω .
- (c) What is g if $\Omega = \mathbb{C}$?

3. (10 points) Evaluate

$$\int_0^{2\pi} \frac{\cos^2\theta}{5+3\sin\theta} d\theta.$$

4. (10 points) Let Ω be a bounded domain in the complex plane. Suppose that f is continuous on $\overline{\Omega}$ and analytic on Ω . Assume |f(z)| = 1 for all $z \in \partial \Omega$, the boundary of Ω .

Show that *f* is a constant function or *f* has a zero on Ω .

- 5. (20 points) Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function such that $\lim_{|z|\to\infty} |f(z)| = +\infty$.
 - (a) Prove that f has a finite number of zeros in \mathbb{C} .
 - (b) Prove that there exists a polynomial *P* such that $f = \frac{P}{g}$, where *g* is holomorphic in \mathbb{C} and $g(z) \neq 0$, for all $z \in \mathbb{C}$.
 - (c) Prove that there exists R > 0 such that $|g(z)| \le |P(z)|$, for all $|z| \ge R$ and that g is a polynomial.
 - (d) Deduce that there exists a constant c such that f = cP.

- 6. (15 points) Let *f* be an analytic function on \mathbb{C} .
 - (a) Prove that for any $\alpha, \beta \in \mathbb{C}$, with $\alpha \neq \beta$, we have for $R > \max(|\alpha|, |\beta|)$

$$\frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz = \frac{f(\alpha) - f(\beta)}{\alpha - \beta}$$

(b) Show if f is bounded, then

$$\lim_{R \to \infty} \int_{|z|=R} \frac{f(z)}{(z-\alpha)(z-\beta)} dz = 0.$$

(c) Using ONLY (a) and (b), show that if f is analytic and bounded on \mathbb{C} , then f is constant. (No credit for other methods).

7. (10 points) Let

$$f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

be an analytic function and

$$F: (x, y) \mapsto (u(x, y), v(v, y)).$$

(a) Show that

$$\det J_F(x,y) = |f'(z)|^2,$$

where $J_F(x, y)$ represents the Jacobian matrix of F at (x, y).

(b) Show that if f'(z) = 0, then $J_F(x, y) = 0$.