King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics Comprehensive Exam: Linear Algebra (211)

Duration: 3 Hours

Solve the following questions (show full details).

Exercise 1 (20 points: 5-5-5-5) Let T be the linear operator on \mathbb{R}^3 defined by T(x,y,z)=(x,x+y,x+z).

- (1) Find the matrix $[T]_S$ representing T in the standard basis S of \mathbb{R}^3 .
- (2) Find the matrix $[T]_B$ representing T in the ordered basis $B = \{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$ of \mathbb{R}^3 .
- (3) Find the characterestic and minimal polynomials of T.
- (4) Show that T is invertible and find T^{-1} (express T^{-1} explicitely).

Exercise 2 (20 points: 5-5-5) Let A and B be $n \times n$ complex matrices.

- (1) Show that AB and BA have the same nonzero eigenvalues.
- (2) Assume that AB = 0. Show that $rank(A) + rank(B) \le n$.

Assume that $A^s = I$ for some positive integer s and let J be the Jordan normal form of A.

- (a) Show that $J^s = I$.
- (b) Show that A is diagonalizable.

Exercise 3 (20 points:5-5-5) Let V be an n-dimensional vector space over the real field \mathbb{R} with a positive definite scalar product (|) and let T be a linear operator on V such that $T^2 = T$ and $TT^t = T^tT$, where T^t is the transpose of T.

- (1) Prove that $V = ker(T) \bigoplus Im(T)$.
- (2) Prove that $ker(T) = ker(T^t)$.
- (3) Prove that for every $v \in V$, v = w + T(u) where $w \in ker(T)$, $||T(v)||^2 = ||T(u)||^2 = (T(v)|T^t(v))$.
- (4) Prove that $T = T^t$.

Exercise 4 (20 points)

Find all possible rational forms and their respective Jordan forms of a matrix with characteristic polynomial $(x-1)^3 (x-2)^4$ and minimal polynomial $(x-1)^2 (x-2)^2$.

Exercise 5 (20 points: 5-5-5)

Let V be a finite dimensional inner product space over a field K and T a self adjoint linear operator on V.

- (1) Prove that each eigenvalue of T is real.
- (2) Prove that the eigenvectors of T associated with distinct eigenvalues are orthogonal.
- (3) Assume that $K = \mathbb{R}$ and let A be a linear on V such that (Av|v) = 0 for all $v \in V$. Prove that $A + A^t = 0$ and if A is symmetric, then A = 0.
- (4) Find a linear operator A such that (Av|v) = 0 for all $v \in V$ but $A \neq 0$.