King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 212) **Linear Algebra** (Duration = 3 hours)

Problem 1. Let *A* := $(0 \ 0 \ 2)$ $\overline{}$ 011 200 $\overline{ }$ \int on R. Determine its

- **(1)** Characteristic polynomial *f*
- **(2)** Minimal polynomial *p*
- **(3)** Jordan form *J*
- **(4)** Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Show that *T* has a cyclic vector.

Problem 2. Let *A* := $(1 \ 0 \ 0)$ $\overline{}$ 010 $1 -1 2$ 1 \int on R. Determine its

- **(1)** Invariant factors p_1, \ldots, p_r
- **(2)** Rational form *R*
- **(3)** Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1,e_2,e_3\}$. Find an explicit cyclic decomposition of \mathbb{R}^3 under *T*; namely, find α , $\beta \in \mathbb{R}^3$ and their respective *T*-annihilators such that $\mathbb{R}^3 = Z(\alpha, T) \oplus Z(\beta, T)$.
- **Problem 3.** (1) Let *V* be the R-vector space of polynomials of degree \leq 3, endowed with the inner product $(f | g)$ = \mathcal{C}^1 $^{-1}$ $f(t)g(t)dt$. Let *W* be the subspace spanned by the monomial x^2 (i.e., $W = \mathbb{R}x^2$) and *E* the orthogonal projection of *V* on *W*. Let $f = a + bx + cx^2 + dx^3 \in V$. Find $E(f)$.
	- **(2)** Let *V* be the R-vector space of real-valued continuous functions on the interval $[-1,1]$, endowed with the inner product $(f | g)$ = \mathcal{C}^1 $^{-1}$ *f*(*t*)*g*(*t*)*dt*. Find the orthogonal complement of the subspace of even functions.

Problem 4. Let *V* be a finite-dimensional vector space over R and let L_1 and L_2 be two *nonzero* linear functionals on *V*. Consider the bilinear form on *V* given by

$$
f(\alpha, \beta) = L_1 \alpha L_2 \beta
$$

(1) Show that rank(f) = 1.

Next, let $V = \mathbb{R}^3$ and let

$$
L_1: V \longrightarrow \mathbb{R} \qquad L_2: V \longrightarrow \mathbb{R}
$$

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - y \qquad ; \qquad L_2: V \longrightarrow \mathbb{R}
$$

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto x - z
$$

(2) Find the matrix of *f* in the standard ordered basis $S := \{e_1, e_2, e_3\}.$

(3) Let $B := \{\alpha_1, \alpha_2, \alpha_3\}$ be an ordered basis for *V* such that the transition matrix from *B* to *S* is

$$
P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}.
$$

Find the matrix of *f* in *B*

(4) Is *f non-degenerate* ? (Justify)

Problem 5. Let *V* be a finite-dimensional vector space over a field *F* and *T* a linear operator on *V*. Let $p = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ be the minimal polynomial of *T*, where $r_i \ge 1$ for each *i* and p_1, p_2, \dots, p_k are distinct monic irreducible polynomials in *F*[*x*]. For each $i = 1,...,k$, set $W_i :=$ Nullspace $(p_i^{r_i}(T))$.

- **(1)** Announce the Primary Decomposition Theorem.
- **(2)** For each *i*, prove there exists $\alpha_i \in W_i$ such that the *T*-annihilator of α_i is equal to $p_i^{r_i}$.
- **(3)** Use (2) to prove there exists $\alpha \in V$ such that the *T*-annihilator of α is equal to p .

—————————————————————–