King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 221)

Linear Algebra (Duration = 2 hours)

Name: ——

——- ID number: ——

Problem 1. Let T_1 , T_2 , and T_3 be linear operators on \mathbb{R}^3 represented in the standard basis $\{e_1, e_2, e_3\}$, respectively, by the following matrices

$$A_1 := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix} \quad ; \quad A_2 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad ; \quad A_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$$

For each T_i , find

- (a) the characteristic polynomial,
- (b) the characteristic values,
- (c) the minimal polynomial.
- (d) Determine if it is diagonalizable. If affirmative, find a basis *B* such that $[T_i]_B$ is diagonal.
- (e) Find a cyclic decomposition of \mathbb{R}^3 under T_i

Problem 2. Let *M* be a matrix with characteristic polynomial $f = x^3(x-1)^4$ and minimal polynomial $p = x^2(x-1)^2$. Find for *M* all possible rational forms and their respective Jordan forms

Problem 3. Let $V = F^{n \times n}$ be the vector space of $n \times n$ matrices over a field F and let $B \in V$.

- (a) Show that the function f_B defined on V by $f_B(A) = \text{trace}(B^t A)$ is a linear functional.
- (b) Show that every linear functional *f* on *V* is of the form $f = f_B$ for some *B* in *V*.
- (c) Show that the mapping $\phi: V \longrightarrow V^*$, $A \mapsto f_A$ is an isomorphism.

Problem 4. Let *V* be a finite-dimensional vector space over a field *F* of characteristic 0 and let *f* be a *symmetric* bilinear form on *V*. For each subspace *W* of *V*, let W^{\perp} be the subspace of all vectors α in *V* such that $f(\alpha, \beta) = 0$ for every β in *W*. Show that

- (a) *f* is non-degenerate if and only if $V^{\perp} = 0$
- (b) rank(f) = dim(V) dim(V^{\perp}).
- (c) $\dim(W^{\perp}) \ge \dim(V) \dim(W)$.
- (d) $V = W \oplus W^{\perp}$ if and only if the restriction of *f* to *W* is non-degenerate.