King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Written Comprehensive Exam (Term 232)

Linear Algebra (Duration = 3 hours | Max. Score = 100)

- ID number: -

Name: _____

Problem 1. [15]

Let *T* be the linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-x_2, x_1)$

(1) Let the ordered basis $B = \{\alpha_1, \alpha_2\}, \alpha_1 = (1, 2) \text{ and } \alpha_2 = (1, -1).$ Find $[T]_B$ the matrix of T in B.

(2) Prove that if *B* is **any** ordered basis for \mathbb{R}^2 and $[T]_B = (a_{ij})$, then $a_{12}a_{21} \neq 0$.

(3) Let *W* be a nonzero proper subspace of \mathbb{R}^2 . Prove that *W* is NOT *T*-invariant.

Problem 2. [15]

Let *W* be the space of $n \times n$ matrices over a field *F* and let W_0 be the subspace spanned by the matrices *C* of the form C := AB - BA. Recall that the trace of an $n \times n$ matrix is equal to the sum of the n entries in the diagonal and let W_1 denote the nullspace of the trace function on *W*.

- (1) Show that $W_0 \subseteq W_1$.
- (2) Construct in W_0 a linearly independent set of $n^2 1$ elements.
- (3) Deduce that W_0 is exactly the subspace of matrices which have trace zero.

[Use the fact that the trace $tr: W \longrightarrow F$ is a linear functional]

Problem 3. [20]

Find the characteristic and minimal polynomials for each one of the following matrices, and indicate whether the matrix is diagonalizable or not with justification.

(1)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 over \mathbb{R}
(2) $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ over \mathbb{R}
(3) $A = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ over \mathbb{C}

1

Problem 4. [10]

Consider the real matrices $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$, $r \neq 0$.

- (1) **Explain** why there must exist a 2×2 invertible matrix *P* such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal.
- (2) Find all matrices *P* satisfying (1).

Problem 5. [25]

Let $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- (1) Reduce xI A to its Smith normal form.
- (2) Use the Smith normal form of *A* to find its invariant factors.
- (3) Find the rational form for *A*.
- (4) Find the Jordan form for *A*.
- (5) Let *T* be a linear operator on \mathbb{R}^4 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3, e_4\}$.
 - (a) Find the respective *T*-annihilators of e_1, e_2, e_3 , and e_4 .
 - (b) Announce the Cyclic Decomposition Theorem for this case.
 - (c) Find an explicit cyclic decomposition of \mathbb{R}^4 under *T*.

Problem 6. [15]

Let *V* be a finite-dimensional inner product space.

- (1) Prove that any orthogonal projection of *V* on a subspace *W* is self-adjoint.
- (2) Let *E* be a projection (i.e., $E = E^2$). Prove that if *E* is normal, then *E* and E^* have the same nullspace, and use this fact to show that $V = \text{Range}(E) \bigoplus (\text{Range}(E))^{\perp}$
- (3) Deduce from (1) and (2), that "a projection is normal if and only if it is self-adjoint."