King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Numerical Analysis of Ordinary Differential Equations Comprehensive Exam

Name:	
ID :	

Q	Points
1	20
2	20
3	20
4	10
5	20
6	20
Total	100

Q1	Consider the Runge-Kutta method with					
	tableau given below					
	1/4	7/24	-1/24	a) Find the stability function of the method.		
	3/4	13/24	5/24	b) Is the method A-stable?		
		1/2	1/2			

Q2 Let f be a continuous function and satisfies a Lipschitz condition for $[a,b] \times R^1$. Consider the linear multistep method $y_n = y_{n-1} + 2hf(x_{n-1}, y_{n-1}) - hf(x_{n-2}, y_{n-2})$ Determine if the method is consistent and stable. If it is consistent then find the order.

Q3 Prove the following Theorem:

Theorem: Let f be a continuous function and satisfies a Lipschitz condition for $[a,b] \times R^1$. Let $y \in C^2[a,b]$ be the solution of $\begin{cases} y'=f(x,y), x \in [a,b], y \in R^1 \\ y(a) = y_0 \end{cases}$ Then, \exists a constant K > 0 such that e_k , the global error in Euler's method, satisfies

$$e_k \leq Kh, k = 0, 1, 2, ..., N$$

Euler's Method: $y_{k+1} = y_k + hf(x_k, y_k)$ $k = 0, 1, \cdots$

Q4 Prove that: Explicit Runge–Kutta methods can never be A-stable

Q5 Solve the given boundary value problem using the finite difference method $u''+(x^2+1)u = \frac{x}{x^2+5}$ with boundary conditions u(0) = 0, u(4) = 1. Suppose the finite difference approximation for the second-order derivative $u'' \approx (u_{i+1} - 2u_i + u_{i-1})/h^2$ and the given interval is divided into four equal subintervals. (Just write the linear system. Don't solve the system)

Q6 Consider the following three problems

<u>(BVP)</u>	<u>(IVP-1)</u>	<u>(IVP-2)</u>	
$u''-3x^2u'+3xu=5$	$u_1''-3x^2u_1'+3xu_1=5$	u_2 ''-3 x^2u_2 '+3 xu_2 = 5	
$u(0) = 1, \qquad u(1) = 2.5$	$u_1(0) = 1, \qquad u_1'(0) = 0$	$u_2(0) = 1, u_2'(0) = 1$	

The numerical solutions of the (IVP-1) and (IVP-2) are given in column(1) and column(2), respectively. Use shooting method to find the numerical solution of the (BVP) then fill column(3).

x	$u_1(x)$	$u_2(x)$	u(x)
0	1	1	
0.2	1.095654	1.294856	
0.4	1.357517	1.745005	
0.6	1.719056	2.25898	
0.8	2.074545	2.702588	
1	2.315669	2.955164	