# PHD COMPREHENSIVE EXAM

# Duration: 180 minutes



- Show your work.
- There are empty pages attached to this exam booklet.
- Calculators are allowed.
- You may use the following formulae
  - (i) Newton's divided difference formula

$$p_n(x) = f[x_0] + \sum_{j=1}^n f[x_0, \cdots, x_j] \prod_{i=1}^{j-1} (x - x_i),$$

(ii) Lagrange basis

$$L_j(x) = \prod_{\substack{1 \le j \le n, \ k \ne j}} \frac{x - x_k}{x_j - x_k}, \quad j = 1, 2, \dots, n.$$

| Problem | Score |
|---------|-------|
| 1       |       |
| 2       |       |
| 3       |       |
| 4       |       |
| 5       |       |
| 6       |       |
| Total   | /100  |

# Problem 1 (20 points)

Consider the function

 $f(x) = x^3 + 1.$ 

- (a) Use  $x_0 = 0$ ,  $x_1 = \frac{1}{2}$  and  $x_2 = 1$  to construct the Lagrange interpolation polynomial of degree at most two to approximate  $f(\frac{1}{4})$  and find the absolute error of this approximation.
- (b) Explain why the obtained absolute error from (a) is given by

$$|\operatorname{error}| = \left| \left( \frac{1}{4} - x_0 \right) \left( \frac{1}{4} - x_1 \right) \left( \frac{1}{4} - x_2 \right) \right|.$$

#### Problem 2 (25 points)

Let  $f : \mathbb{R} \to \mathbb{R}$  be a function and *h* a positive real number. Define the forward difference operator  $\Delta_h$  by

$$\Delta_h f(x) = f(x+h) - f(x).$$

Powers of  $\Delta_h$  are defined recursively by

$$\Delta_h^0 f(x) = f(x), \qquad \Delta_h^k f(x) = \Delta_h(\Delta_h^{k-1} f(x)), \quad k = 1, 2, \dots$$

(a) Show by induction on *n* that

$$f[x, x+h, x+2h, \ldots, x+nh] = \frac{1}{n!h^n} \Delta_h^n f(x),$$

where

$$f[x_0, x_1, x_2, \dots, x_j] = \frac{f[x_1, x_2, \dots, x_j] - f[x_0, x_1, x_2, \dots, x_{j-1}]}{x_j - x_0}, \text{ and } f[x_0] = f(x_0).$$

is the divided difference of f at  $x_0, x_1, x_2, \ldots, x_j$ .

(b) Using the Newton's divided difference interpolation formula, show that the interpolating polynomial of degree at most n of f at the points  $x_0, x_0 + h, x_0 + 2h, ..., x_0 + nh$  is given by the *Newton forward difference formula* 

$$p_n(x) = \sum_{j=0}^n \binom{s}{j} \Delta_h^j f(x_0)$$

where

$$s = \frac{x - x_0}{h}$$
,  $\binom{s}{j} = \frac{s(s-1)\dots(s-j+1)}{j!}$ , with  $\binom{s}{0} = 1$ .

#### Problem 3 (15 points)

Consider the function

 $f(x) = a^x$  with a > 1 a real number.

(a) With the notation of the previous Problem, show by induction on the integer k that

$$\Delta_1^k f(x) = (a-1)^k a^x$$

(b) Conclude, using Newton forward difference interpolation formula, that the interpolating polynomial for *f* constructed at the integers 0, 1, 2, ..., *n*, is given by

$$p_n(x) = \sum_{k=0}^n (a-1)^k \binom{x}{k}$$

(c) Use part (b) to show the identity

$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

#### Problem 4 (15 points)

Let  $a < b \in \mathbb{R}$ . Let  $\{\pi_0, \pi_1, \dots, \pi_n, \dots\}$  be a sequence of orthogonal polynomials on the interval [a, b] with respect to a weight function  $\omega : [a, b] \to (0, \infty)$ , i.e. degree of  $\pi_j = j$  and

$$\langle \pi_i, \pi_j \rangle = \int_a^b \pi_i(x) \pi_j(x) \omega(x) dx = 0, \quad i \neq j.$$

Further, let  $x_1, x_2, \ldots, x_n$  be the zeros of  $\pi_n$ .

(a) Show that the Lagrange polynomials of degree (n - 1) based on  $x_1, x_2, ..., x_n$  are orthogonal to each other, that is

$$\int_{a}^{b} L_{i}(x)L_{j}(x)\omega(x)dx = 0, \quad i \neq j,$$

(b) For a given function f, let

$$y_k = f(x_k), \quad k = 1, 2, \dots, n.$$

Show that the polynomial  $p_{n-1}(x)$  of degree at most (n-1) that interpolates the function f at the zeros  $x_1, x_2, ..., x_n$  satisfies

$$||p_{n-1}||^2 = \sum_{k=1}^n y_k^2 ||L_k||^2,$$

where the weighted norm ||.|| is defined as

$$||g|| = \sqrt{\int_a^b g(x)^2 \omega(x) dx},$$

for any suitably integrable function *g*.

### Problem 5 (15 points)

Let *S* be the cubic spline that interpolates a function  $f \in C^2[a, b]$  at the knots

 $a = x_1 < x_2 < \ldots < x_n = b$ 

and satisfies the clamped boundary conditions

$$S'(a) = f'(a), \quad S'(b) = f'(b).$$

For  $x \in [a, b]$ , let D(x) = f(x) - S(x),

(a) Using integration by parts show that

$$\int_{a}^{b} S''(x) D''(x) dx = -\int_{a}^{b} S^{(3)}(x) D'(x) dx.$$

(b) Divide the interval [*a*, *b*] into sub-intervals and use integration by parts to show that

$$\int_{a}^{b} S^{(3)}(x) D'(x) dx = 0.$$

(c) Conclude that

$$\int_a^b \left[S''(x)\right]^2 dx \le \int_a^b \left[f''(x)\right]^2 dx.$$

## Problem 6 (10 points)

Let  $a < b \in \mathbb{R}$ . Let  $\{\pi_0, \pi_1, \dots, \pi_n, \dots\}$  be a sequence of **orthonormal** polynomials on the interval [a, b] with respect to a weight function  $\omega : [a, b] \to (0, \infty)$ , i.e. degree of  $\pi_j = j$  and

$$\langle \pi_i, \pi_j \rangle = \int_a^b \pi_i(x) \pi_j(x) \omega(x) dx = \delta_{ij}.$$

Let *P* be a polynomial of degree *n* and denote by  $\mathbb{P}_m$  the linear space of real polynomials of degree at most *m* (*m*  $\leq$  *n*). Consider the least squares problem

$$Q^* = \underset{Q \in \mathbb{P}_m}{\operatorname{arg\,min}} \int_a^b \left( Q(x) - P(x) \right)^2 \omega(x) dx, \quad m \le n. \tag{(\bigstar)}$$

Writing *P* as

$$P(x) = \sum_{k=0}^{n} a_k \pi_k(x),$$

show that the solution to  $(\bigstar)$  is given by

$$Q^*(x) = \sum_{k=0}^m a_k \pi_k(x).$$