Department of Mathematics, KFUPM
Control and Stability of Linear Systems
Comprehensive Exam (221)
Duration: 150 minutes

Prob. 1: (10 points) Find the characteristic polynomials and minimal polynomials
of the following matrix
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Prob. 2: (20 points) The dynamics of a specific system is described by
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(a) Find all stationary points.
(b) Linearize the system around the stationary point corresponding to g = 3.

Prob. 3: (20 points) Compute the transfer function of the system
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where
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Is this system BIBO stable?

Prob. 4: (20 points) (a) If the exponential matrix of
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is given by
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what is h,;(t), i =1,2,37
(b) Find a matrix A(t) such that
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is the state transition matrix of the homogeneous ODE 2/ = A(t)a.

Prob. 5: (10 points) Consider the matrix
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(a) Compute ¢4,

(b) Is the system +' = Ar asymptotically stable? What about marginally stable?

Prob. 6: (20 points) Consider the system
{ ' = (A - bk)z + bu,

U=,

where

.~1=(8 é).b:(?).k=(k-1k2).c=(01)

and k;, ks, are scalar constants.

(a) Compute the system’s transfer function, leaving your answer as a function of
the constants k; and k,. '

(b) Determine values for k; and k; such that the transfer function is equal to
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