King Fahd University of Petroleum and Minerals College of Computing and Mathematics Mathematics Department MATH 432 Syllabus

Instructor: Zaid Sawlan zaid.sawlan@kfupm.edu.sa

Semester 232

- Course Code and Name: Math 432, Applied Matrix Theory
- Course Credit Hours: 3-0-3
- Textbook: Linear Algebra and its Applications by Gilbert Strang, Fourth Edition.
- Reference: Matrix Theory by Joel N. Franklin.
- **Course Content:** Review of the theory of linear systems. Eigenvalues and eigenvectors. The Jordan canonical form. Bilinear and quadratic forms. Matrix analysis of differential equations. Variational principles and perturbation theory: the Courant minimax theorem, Weyl's inequalities, Gershgorin's theorem, perturbations of the spectrum, vector norms and related matrix norms, the condition number of a matrix.

Course Prerequisite: MATH 208 or MATH 225

• Course Learning Outcomes:

Upon completion of the course, students should be able to:

- 1. Apply matrix theory to solve systems of linear ODEs.
- 2. Recognize different classes of matrices and their properties.
- 3. Use Rayleigh Principle to minimize/maximize quotients of quadratic functions.
- 4. Perform the Gram-Schmidt orthogonalization process.
- 5. Discuss simple functions of matrices.
- 6. Apply the notion of condition number to discuss relative errors.

Grading Policy:

	Date	Material	Percentage
Major Exam I	Week 5	Chapters 1 and 2	20%
Major Exam II	Week 10	Chapters 3, 4 and 5	20%
Final Exam	TBA	Comprehensive	35%
Homework		on Blackboard	10%
Class work			15%

Attendance:

Attendance is a University Requirement (see p. 38 of the Undergraduate Bulletin 2006-2009).

- If a student misses a class, he is responsible for any announcement made in that class.
- A DN grade will be awarded to any student who accumulates 9 unexcused absences.

Academic Integrity:

All KFUPM policies regarding ethics apply to this course. See the Undergraduate Bulletin.

Week	Date	Topics		
1	Jan 14 - 18	Chapter 1: Introduction, Geometry of Linear Equations		
2	Jan 21 - 25	Chapter 1: Triangular Factors and Row Exchanges, Inverses and Transposes		
3	Jan 28 - Feb 1	Chapter 2: Vector Spaces and Subspaces, Linear Independence, Basis, and Dimension		
4	Feb 4 - 8	Chapter 2: The Four Fundamental Subspaces, Graphs and Networks , Linear Transformations		
5	Feb 11 - 15	Chapter 3: Orthogonal Vectors and Subspaces, Projections		
6	Feb 18 - 21	Chapter 3: Orthogonal Bases and Gram-Schmidt, Fast Fourier Transform		
Feb 22: Saudi Founding day				
7	Feb 25 - Feb 29	Chapter 4: Determinants, Properties and Applications of Determinants		
8	Mar 3 - 7	Chapter 5: Diagonalization of a Matrix, Difference Equations and Powers A ^k		
9	Mar 10 - 14	Chapter 5: Differential Equations and e ^{At} , Complex Matrices, Similarity Transformations		
10	Mar 17 - 21	Chapter 6: Minima, Maxima and Saddle Points, Positive Definite Matrices		
11	Mar 24 - 28	Chapter 6: Singular Value Decomposition, Minimum Principles		
Mar 29 - Apr 18: Eid Al-Fitr Holidays				
12	Apr 21 - 25	Chapter 7: Computations with Matrices, Matrix Norm and condition number		
13	Apr 28 - May 2	Chapter 7: Computation of Eigenvalues, Iterative Methods		
14	May 5 - 9	Perturbation theory: the Courant minimax theorem		
15	May 12 - 16	Weyl's inequalities, Gershgorin's theorem, perturbations of the spectrum		
16	May 19	Review		