ADVANCED CALCULUS II - MATH 441 - TERM 232

Instructor	Dr. Mohammed Alshahrani	Phone	+966-13-860-7748
Office	Building 5 – Room 201 - 1	E-mail	mshahrani@kfupm.edu.sa
Office Hours	Face-Face: Sunday and Tuesday 11:00-11:50AM Online: by appointment through TEAMS	Website	https://mshahrani.website/

Textbook:

Moskowitz, M. & Paliogiannis, F. Functions of Several Real Variables. World Scientific, Singapore, 2011 <u>References:</u>

R1) Laczkovich, M. & Sós, V. Real Analysis: Series, Functions of Several Variables, and Applications. Springer, 2017

Description:

- Theory of sequences and series of functions.
- Real functions of several real variables: limit, continuity, differentiability
- Taylor's theorem. Maxima and minima, Lagrange multipliers rule.
- Elementary notion of integration on Rⁿ

Student Learning Outcomes:

After completion of the course, the students should be able to:

- Recall basic geometry and topology of Euclidean space.
- Discuss notion of limit of a function of several variables to state directional, partial and Fréchet derivatives.
- > Discuss Inverse and Implicit function theorems.

Grading Policy:

- 20%: Quizzes (3 quizzes)
- 45%: Two Major Exams: first 20%, second 25%
- 35%: Final comprehensive exam

Evaluation:

Final grade is according to the scale.

- Change of variables in multiple integrals, Fubini's theorem.
- Implicit and inverse function theorems.
- Convergence and divergence of improper integrals.
- Differentiation under the integral sign.
- Determine nature of critical points using Hessian matrix.
- > Apply method of Lagrange multipliers to extremum problems with constraints.
- Use Fubini's theorem to compute multiple integrals.
- > Discuss convergence of improper integrals.

GRADE	RANGE
A+	[90%, 100%]
Α	[80%, 90%]
B+	[75%, 80%]
В	[70%, 75%]
C+	[65%, 70%]
С	[55%, 65%]
D+	[50%, 55%]
D	[45%, 50%]
F	[0%, 45%]

Course	<u>Schedule:</u>	1	
Week	Торіс	Section	HW (DO NOT HAND-IN)
1		1.1, 1.2, & 1.3	Page 23: 1, 4 & Page 37: 14
	Basic Features		
2&3	Space, R ⁿ	1.4, 1.5 & 1.6	Page 42: 1,3,7 & Page 60: 1.8.24, 1.8.17
4			2(c, e), 4, 7b
	Functions on	2.1, 2.2 & 2.3	3,8,9, 10, 11, 12
5	Spaces		Sec 2.7: 9, 10, 13, 15
		2.4 & 2.5	EXAM I – Week 5 or 6
6		2.6	
		3.1	6, 7, 10, 13, 20
7		3.2 & 3.3 & 3.4	1, 3b
8	Differential Calculus in	3.5 & 3.6	4, 20
	Several		
9	V UNUDIES	3.7 & 3.8	1, 2, 15
10		3.9	2, 7
			EXAM II – Week 10 or 11
11		4.1	5, 6
	Integral Calculus in		
12	Several	4.2 & 4.3	2, 4
	V difdbics		
13	Chango of	5.1	9, 11
	Variables		
14	Improper	5.2 & 5.3	
	Multiple Integrals		
15			
-	Revision		

FINAL EXAM – See Registrar website.