KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DEPARTMENT OF MATHEMATICS

DHAHRAN, SAUDI ARABIA

Term 231 – Fall 2023

MATH 503: Mathematics for Data Science. Instructor: Ibrahim O. Sarumi Office: Building 5 – Room 415 Phone: 4197 Email: ibrahim.sarumi@kfupm.edu.sa Office Hours: Prerequisite: Graduate Standing Credit Hours: (3-0-3)

Course Description:

Selected topics from linear algebra, multivariate calculus, and optimization for Data Science with an emphasis on the implementation using numerical and symbolic software, toolboxes, and libraries for data science like NumPy, SciPy, Pandas, SymPy. Topics include data transformation using linear algebra, vector spaces, linear transformations, matrix representations, matrix decompositions (eigenvectors, LU, QR, SVD, Cholesky); multivariate calculus for continuous, convex, and non-convex optimization methods; basic neural network design.

Course Material:

My material for this course will be my lecture notes.

Textbook:

Deisenroth etal, Mathematics for Machine Learning, 2021 (Main reference).

References:

1. Charu C. Aggarwal, Linear Algebra and Optimization for Machine Learning, 2020.

2. Thomas Nield, Essential Math for Data Science, 2022

Communication:

For regular announcements, students are advised to check Teams and Blackboard regularly.

Academic Integrity:

All KFUPM policies regarding ethics and academic honesty apply to this course

Attendance: (As per KFUPM policy) **DN** is assigned for 20% (9) unexcused absences and 33% (15) overall absence (excused and unexcused)

Grading:

Activity	Weight
Quizzes	10%
Homework	10%
Projects	20%
Midterm exam	25%
Final Exam	35%

Course Objectives:

Review selected topics from multivariate calculus, linear algebra, and optimization related to data science Introduce data scientific software, toolboxes, and libraries Solve problems in linear algebra and optimization topics related to data science. Application of mathematical topics to basic neural network design.

Student Learning Outcomes:

Explain the mathematical background to solve data science problems

Identify the calculus, linear algebra, and optimization topics related to each step of a data science problem

Apply computational tools in data science problems

Application of mathematical tools to neural network design

Computation Tasks

Python Programming language will be used for implementing computational tasks in this course. Frequently used package used include:

- Numpy
- Scipy
- Core python programming constructs (mainly Loops, Conditioners and Lists)
- Scikit learn will be used to compare with standard machine learning algorithms

Highlights of Coding tasks

Week	Topics and Related application	Tasks and Possible Goals
Week 3	Solving Systems of Linear Equations	 Hands-on Illustration (Elementary Computation): Using Numpy and Scipy to solve linear systems Check rank of matrix Illustrate with scipy the challenges in solving rank-deficient problems Goal: Motivate the idea of approximate solution to linear systems
Week 4	Vector norms, inner-products, lengths and distances Note : Distance between vectors is the building block of the k Nearest Neighbor algorithm	 Hands-on Illustration: Compute matrix and vector norms in Numpy (elementary task) Use the knowledge of lengths and distances to implement, using Numpy and Scipy, the k Nearest Neighbor algorithm. Goal: Sections 3.1, 3.2, 3.3 and 3.4, which for the basis of kNN classifier
Week 6	 Solving Linear system Revisited Fitting curves to data (formally called Regression) 	 Hands-on Illustration: Use Numpy and Scipy to implement least square approximation for fitting data to a straight line. Apply Linear Regression in Scikit learn to same dataset Goal: To illustrate some of the materials in chapters 2 and 3 as forming some of the basis for linear regression.
Week 8	 Eigendecomposition and Diagonalization Singular value decomposition 	Hands-on Illustration: Compute Eigenvalues and Eigenvectors in Numpy (Basic Task)

	Applications Eigendecomposition together with projections are vital reducing the dimensionality of high-dimensional data Performing regression on highly-correlated data often lead to solving column-rank deficient problems. We use SVD	 Perform principal component analysis using Numpy and compare with Scikit learn Perform SVD in Numpy Use SVD to solve column-rank deficient problems (Revisit linear regression for highly- correlated data) Each of the above tasks is considered a goal by itself
Week 12	Optimization Using gradient descent. Note: Many Machine learning algorithms including linear regression (already covered) and Regularization for support vector machine use the gradient descent iteration for speedy approximation	 Hands-on Illustration: Implement the Gradient Descent iteration in python for finding least square solutions (Requires Numpy Library and for loops)

SCHEDULE and COVERAGE of MATERIAL

Week No. (Dates)	Reference	Topics
Week 1 Aug. 27 & 29	Chapter 1	 Finding Words for intuition Picture of Data Analytics – Math – Machine Learning Data as vectors/matrices
	Chapter 2 2.2	Linear AlgebraMatrices and algebra of matrices
	2.1	 Systems of Linear Equations With a brief motivation (Linear Regression case study)
Week 2	Chapter 2	Linear Algebra
Sep. 3 & 5	2.4	Vector Spaces
		Understanding Solvability of Systems via:

	2.5	Linear Independence
	2.6	Basis and Rank
Week 3		
Sep. 10 & 12		
	2.3	 Solving Systems of Linear Equations
		Hands-on Illustration (Elementary Computation):
		Using Numpy and Scipy to
		3. solve linear systems
		4. Check rank of matrix
		 Inustrate with scipy the challenges in solving rank- deficient problems
		Motivate the idea of approximate solution to linear
		• Motivate the luea of approximate solution to linear
Week 4	Chapter 2 (cont.)	Linear Mannings
Sep. 17 & 19	and Chap 3	
•		Analytic Geometry
	3.1	Norms
	3.2	Inner Products
	3.3	Lengths and Distances
	3.4	Angles and Orthogonality
		Code Illustration:
		 Compute matrix and vector norms in numpy
		(elementary task)
		• Use the knowledge of lengths and distances to
		implement using Numpy and Sciny, the k Nearest
		Neighbor algorithm
		Goal: Sections 3.1, 3.2, 3.3 and 3.4, which for the basis of
		kNN classifier.
Sep 23: National	3.5	Orthonormal Basis
Day	3.6	Orthogonal Complement
Sep 24: National	3.7	Inner Product of Functions
Day Holiday	3.8	Orthogonal Projections
Week 5	3.9	Rotations
Sep. Sep. 26		
Week 6		Code Illustration:
Uct. 1 & 3		

		 Using Numpy and Scipy to implement least square
		approximation for fitting data to a straight line.
		Apply LinearRegression in scikit learn to same dataset
		Goal: This illustrates what we have learned in chapters 2
		and 2 as forming some of the basis for linear regression
March 7	Chautau A	
week /	Chapter 4	
Oct. 8 & 10	4.1	Determinant and Trace
	4.2	Eigenvalues and Eigenvectors
	4.3	Cholesky Decomposition
Week 8	4.4	Eigendecomposition and Diagonalization
Oct. 15 & 17	4.5	Singular Value Decomposition
		Code Illustration:
		Compute Figenvalues and Figenvectors in Numpy
		Berform principal component analysis using numpy
		• renorm principal component analysis using numpy
		and compare with Scikit learn
		Perform SVD in Numpy
		 Use SVD to solve column-rank deficient problems
		(Revisit linear regression for highly-correlated data)
Week 9	Chapter 5	Vector Calculus
Oct. 22 & 24	5.1	Differentiation of Univariate Functions
	5.2	Partial Differentiation and Gradient
	5.2	Gradients of Vector Valued Eurotions
Maak 10	5.5	Gradients of Matrices
Week 10	5.4	Gradients of Matrices
Oct. 29 & 31	5.5	Useful Identities for Computing Gradients
	First P	Progress Report by end of week 10
Week 11	5.6	Backpropagation and Automatic Differentiation
Nov. 5 & 7	5.7	Higher-Order Derivatives
Week 12	Chapter 7	Continuous Optimization
Nov. 12	7.1	Optimization Using Gradient Descent
	7.2	Constrained Optimization and Lagrange Multipliers
		Code Illustration:
		 Implement the Gradient Descent iteration in python
		(Requires Numpy Library and for Joons)
		Midterm Break Nov. 19 - 23
Week 13	73	Convex Ontimization
Nov 26 9 20	1.5	
Week 14		
Dec. 03 & 05		
	<mark>Fi</mark>	nal Project report submission
Week 15		Project Presentation
Dec. 10 & 12		

Week 16	
Dec. 16	