King Fahd University of Petroleum & Minerals

Department of Mathematics

Syllabus of the Comprehensive Exam MATH 535 Functional Analysis

Topics

- Normed & Banach Spaces: Norms and equivalent norms; completeness; Cauchy sequences; subspaces, closures, quotients; Baire category.
- Bounded Linear Operators: Operator norm, continuity, boundedness; invertible operators;
- Convex Sets & Separation: Convexity; extreme points (basic); Minkowski functional; separation/support via Hahn–Banach
- Linear Functionals & Duality: Dual spaces; norm of a functional; annihilators; adjoint between duals;
- Reflexive Spaces: Unit ball weak compactness; reflexivity of ℓ^p ; basic non-reflexive examples.
- Weak & Weak-* Topologies: Weak vs norm convergence; weak-* on X^* ; Banach-Alaoglu;
- Banach Contraction Principle: Fixed points in complete metrics; error bounds; Picard/integral-equation applications.
- Hahn—Banach Theorem: Norm-preserving extension; geometric separation; dual-norm computations.
- Uniform Boundedness (Banach-Steinhaus): Standard consequences.
- Open Mapping & Closed Graph Theorems
- **Hilbert Spaces**: Inner product, norm; orthogonality; projection theorem; orthonormal bases; adjoint operators
- Riesz Representation (Hilbert): Identify $H^* \cong H$; functionals as inner products; L^2 applications.

References

• E. Suhubi, Functional Analysis, (Kluwer, 2003)