KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Department of Mathematics MATH 551 (Abstract Algebra) Semester 232 (Spring 2024) Prof. Jawad Abuihlail

Description: Basic definitions of rings and modules. Homomorphisms. Sums and products. Exactness. Hom and tensor. Adjoint isomorphism. Free, projective and injective modules. Chain conditions. Primary decomposition. Noetherian rings and modules. Artinian rings. Structure theorems.

Prerequisite: Graduate Standing.

Textbook: P. Grillet, Abstract Algebra, 2nd edition, Springer (2007).

https://link-springer-com.kfupm.idm.oclc.org/book/10.1007/978-0-387-71568-1

References:

1) T. Hungerford, Algebra, Springer-Verlag, New York-Berlin (1980).

- 2) S. Lang, *Algebra*, Revised 3rd edition, Springer (2005).
- 3) R. Wisbauer, Foundations of Module and Ring Theory, Routledge, 1st edition (2018).

Grading:

]	First Major	Second Major	Homework	Projects/Presentations	Final Exam
	20%	20%	10%	15%	35%

Exams:

	1 st major	2 nd major	Final
Date	29.2.2024	25.4.2024	TBA

Attendance: Students are expected to attend all lecture classes.

 \succ If a student misses a class, he/she is responsible for any announcement made in that class.

> A DN grade will be awarded to any student who accumulates more than 20% unexcused absences or 33% excused and unexcused absences

Objectives:

- (1) To identify ring-theoretic and module-theoretic properties and identify these properties in familiar rings and modules.
- (2) To provide proofs to simple assertions of ring- and module-theoretic principles.

Learning Outcomes:

Upon successful completion of this course, the student should be able to

Code	CLO		
1	Knowledge and Understanding		
1.1	Demonstrate rigorous understanding of the foundations of Rings and Modules.		
1.2	Demonstrate rigorous understanding of the Basics of Category Theory (Categories,		
	Functors, Limits, Colimits, Adjointness).		
2	Skills		
2.1	Prove and apply results on Noetherian modules, associated primes, primary		
	decomposition, and Hilbert's Basis Theorem.		
2.2	Prove and apply results on Artinian and indecomposable modules, including Krull		
	Schmidt Theorem and various semisimplicity results.		
2.3	Prove and apply basic results on free, projective, and flat modules.		
2.4	Prove and apply results on injective modules, including Baer criterion and divisibility.		
2.5	Prove and apply results on semisimple rings, including structure results.		
3	Values		
	Manage complex ethical and professional issues and make informed judgements on		
	ethical codes and practices.		

Detailed Syllabus

Week(s)	Section(s)	Title	
1 - 2	Chapter III. Rings		
	III.1-III.2	Rings, Subrings and Ideals	
	III.3	Homomorphisms	
	III.4	Domains and Fields	
	III.11	Noetherian Rings	
3	Chapter VII.	Commutative Rings	
	VII.1.	Primary Decomposition	
4-5	Chapter XVI:	Categories	
	XVI.1	Definitions	
	XVI.2	Functors	
	XVI.3	Limits and Colimits	
	XVI.4	Completeness	
	XVI.6	Adjoint Functors	
6-7	Chapter VIII.	Modules	
	VIII.1	Definition	
	VIII.2	The Adjoint Functor Theorem	
	VIII.3	Direct Sums and Products	
	VIII.4	Free Modules	
	VIII.5	Vector Spaces	
	VIII.8	Chain Conditions (Modules of Finite Length)	
8 - 10	Chapter IX. S	emisimple Rings and Modules	
	IX.1	Simple Rings and Modules	
	IX.2	Semisimple Modules	
	IX.3	The Artin Wedderburn Theorem	
	IX.5	The Jacobson Radical	
	IX.6	Artinian Rings	
11 - 13	Chapter X. Pr	ojectives and Injectives	
	X.1	Exact Sequences	
	X.3	Projective Modules	
	X.4	Injective Modules	
14 – 15 Chapter XI. Construction			
	XI.1	Groups of Homomorphisms	
	XI.2	Properties of Hom	
	XI.5 & XI.6	Tensor Products and their Properties	
	XI.8	Flat Modules	

Projects:

TEAM I	TEAM II	Due
UFDs	PIDs	30.1.2024
Pushouts	Pullbacks	20.2.2025
Additive Categories	Subgenerators	24.3.2024
The Projective Cover	The Injective Hull	30.4.2024
Primitive Rings	Quasi-Frobenius Rings	15.5.2024

MATH 551 (Abstract Algebra)

Semester 232 (Spring 2024)

Homework Problems

Section	Due	Problems	# of required questions
3.1	10.2.2024	4, 8*, 12, 13	2
3.2		6*, 7, 9	2
3.3		4*, 8, 9,	2
3.4		1, 4*, 5	2
3.11		1, 2, 5*	2
7.1		3, 15*, 17, 18, 19, 20, 21*	5
16.1	26.3.2024	2, 8*, 10	2
16.2		3, 4, 8*	2
16.3		2, 5*, 8, 11, 12, 14, 15*	4
16.4		3, 5*, 7*, 11, 12	4
16.6		2, 5*, 6, 9	2
8.1	19.3.2024	5, 6, 8*, 9, 20*	3
8.2		3*, 6*, 8, 9, 10	3
8.3		2*, 5, 7*, 10, 12*, 14	4
8.4		1*, 2*, 9, 10*, 11	4
8.5		2, 4, 5*, 6*, 9*	4
8.8		4, 5, 6*, 8*, 10, 11*, 14, 15	4
9.1	23.4.2024	3, 4, 5*	2
9.2		1, 4*, 6	2
9.3		2, 3*, 6, 7	3
9.5		1, 3, 5, 7*, 8, 16*	3
9.6		1, 3, 4, 8*	3

Note: Problems with (*) should be solved.

10.1	20.5.2024	4, 5, 7*, 8, 9*, 10	4
10.3		2, 3, 4*, 5, 7*, 8, 9	4
10.4		2 (correction: direct product), 5, 7, 8, 9, 10*	3
11.1	20.5.2024	4, 6, 7*	2
11.2		2, 5, 6, 10, 11*	3
11.5		3, 4*, 11, 12, 13*	3
11.6		6, 10*, 12, 14, 17*	3
11.7		2, 6, 7*, 8, 9, 10*	3