King Fahd University of Petroleum and Minerals Department of Mathematics Syllabus Math 557 Instructor: Dr. Muhammad Yousuf

Course Title: Applied Linear Algebra

Course Description: Basics concepts from linear algebra and numerical analysis. Direct methods for large, sparse linear systems, Cholesky and LU factorizations. Regularization of ill-conditioned least squares problems. SVD and QR factorizations. Sensitivity and conditioning of linear systems and least square problems. Stationary and non-stationary iterative methods, multigrid methods. Matrix theory including spectral decompositions, and eigenvalue perturbation theory. Eigenvalue and QR algorithm, and computations of SVD. Applications.

Prerequisite: Graduate standing

Textbook: Numerical Linear Algebra and Matrix Factorization, Lyche, Springer (2020) **References:**

- Numerical Linear Algebra, L. Trefethen and D. Bau, SIAM (1997)
- Numerical Linear Algebra, W. Lyton and M. Sussman, World Scientific (2020)
- Linear Algebra and Matrix Computations with MATLAB, D. Xue, De Gruyter (2020)
- Numerical Analysis: Mathematics of Scientific Computing by Kincaid and Cheney, Brooks/Cole Publishing, (2002)

Learning Outcomes: Upon completion of this course, students will be able to:

- 1. Apply fundamental numerical linear algebraic concepts.
- 2. Estimate stability of solutions to linear algebraic equations & eigenvalue problems.
- 3. Utilize factorizations for efficiently solving linear systems and least squares problems.
- 4. Use the underlying principles of iterative algorithms for computing and selecting.
- 5. eigenvalues and finding singular values.
- 6. Estimate the speed of convergence and computational complexity of the selected numerical algorithms.

Course Main Objectives

- 1. Introduce various iterative and factorization techniques for solving large sparse linear systems of equations.
- 2. Discuss dense linear systems.
- 3. Study computation of eigenvalues, least squares problems, and error analysis.

Assessment:

Assignments and Projects 30% (15+15)

Two Majors 40% (20+20)

Final Exam 30%.

WK	Date	Topics	MATLAB Implementation
1	Aug 27 – 31	Notations and review of basic concepts	Basic matrix operations
2	Sep 03 – 07	Matrix Arithmetic, Inverse,	Compute Inverse, determinants
		Determinants	
3	Sep 10 – 14	Direct Method to solve Linear Systems:	Verify solutions using Matlab
		Gaussian Elimination and Backward	
		Substitutions	
	Sep 17 – 21	Special Matrices: Positive Definite,	
4		Diagonally Dominant and Triangular	
		matrices.	
5	Sep 25 - 28	LU factorization to solve linear systems	Verify solutions using Matlab
6	Oct 01 – 05	LDL and Cholesky Factorization	
7	Oct 08 – 12	Eigenvalues, Eigenvectors and Singular	Compute using Matlab
		Values	
8	Oct 15 – 19	The Singular Value Decomposition:	
		SVD	
9	Oct 22 – 26	Least Squares	
10	Oct 29 – Nov 2	Iterative Methods to solve linear	Matlab Implementation
		systems	
11	Nov 05 – 09	Conjugate gradient method	
12	Nov 12 – 16	Eigenvalues approximation:	Matlab Implementation
		Gershgorin's circel theorem	
13	Nov 26 – 30	The QR Algorithm: The Power method	Matlab Implementation
14	Dec 03 – 07	Project report and presentation	
15	Dec 10 – 14	Review	

National Holiday:	Sep 24, 2023
Midterm Break:	Nov 19 – 23, 2023
Normal Sunday Class:	Dec 17, 2023