Title: Combinatorics & Graph Theory

Textbook: Applied combinatorics (6th ed), Alan Tucker, Wiley, 2012.

Description: Enumerative analysis, generating functions. Sorting and searching. Theory of Block Computational combinatorics. Methods of transforming codes. design. combinatorial ideas into efficient algorithms. Algorithms graphs, network on flow.

Office Hours: Every Monday from 10:00 to 11:00 AM

Grading Policy:

Exam 1	Exam 2	Exam 3	HW	Presentations	Final Exam
20%	20%	20%	5%	5%	30%
tba	tba	tba			tba

Week	Topics			
1, 2	Elements of Graph Theory: Graphs, Isomorphisms, Hamiltonian			
	Graphs, Fleury's algorithm, planar graphs, subdivision, minor, dual of			
	a graph, maximal planar graphs, Euler's formula,			
3,4	Covering circuits and Graph colouring: Eulerian and semi-Eulerian			
	graphs, colouring, colouring theorems.			
5,6	Trees: Properties of trees, shortest paths, the traveling Salesperson			
	Problem, minimum spanning trees			
7,8	General Counting Methods for arrangements and selections:			
	Counting principles, Binomial Identities, multinomial coefficients,			
9	Generating Functions: Calculating coefficients of generating			
	functions, exponential generating functions			
10	Recurrence Relations: Recurrence relations models, linear recurrence			
	relations, recurrence relations and generating functions.			
11	Mobius Inversion Formula in Posets: Incidence algebra of a poset,			
	Mobius inversion formula, eExclusion-inclusion.			
12, 13	Polya's Enumeration Formulas: Group action, Burnside's Formula,			
	Polya's formula.			
14, 15	Introduction to Combinatorics on Words: Primitive words,			
	languages, counting special kinds of words, codes,			