- 1. One statement is False about f(x) = x|x| over $(-\infty, \infty)$
 - (a) f(x) is concave upward in its domain

- (b) f'(0) exists
- (c) f(x) is increasing on its Domain
- (d) f(x) is an odd function
- (e) f(x) has no global maximum value on its domain

- 2. Using linear approximation of $f(x) = x^4$, the estimation value of $(1.999)^4$ is:
 - (a) 15.968

- (b) 16.032
- (c) 16
- (d) 15.987
- (e) 15.999

- 3. Let f and g be differentiable functions, such that f(g(x)) = x and $f'(x) = 1 + (f(x))^2$, then g'(1) =
 - (a) $\frac{1}{2}$

- (b) 1
- (c) 0
- (d) 2
- (e) $\sqrt{2}$

- 4. The slope of the tangent line to the curve $x^y = y^x$, at the point (1, 1) is:
 - (a) 1

- (b) 0
- (c) e
- (d) $\frac{1}{e}$
- (e) \sqrt{e}

- 5. The <u>closest</u> point on the line y = 2x + 3 to the origin is
 - (a) $\left(-\frac{6}{5}, \frac{3}{5}\right)$

- (b) (0,3)
- (c) $\left(-\frac{3}{2},0\right)$
- (d) $\left(-\frac{3}{2},3\right)$
- (e) (-1,1)

- 6. Let $f(x) = \ln(1 \ln x)$, the largest interval where f is decreasing is:
 - (a) (0, e)

- (b) (e, ∞)
- (c) $(0, \infty)$
- (d) (0,1)
- (e) (1, e)

- $f(x) = e^{\tan^{-1} x}$ is concave up ward over the interval
 - (a) $\left(-\infty, \frac{1}{2}\right)$ (b) $\left(-\infty, \infty\right)$

- (c) $(-\infty, 1)$
- (d) $\left(\frac{1}{2},\infty\right)$
- (e) $\left(\frac{\pi}{4}, \infty\right)$

- The number satisfying the conclusion of the Mean Value Theorem of $f(x) = \frac{x}{x+2}$ over [1,4] is
 - (a) $3\sqrt{2} 2$

- (b) $-3\sqrt{2}-2$
- (c) $3\sqrt{2} + 2$
- (d) $3\sqrt{2}$
- (e)

- 9. The local minimum value of $f(x) = 2 \cos x + \cos^2 x$ over $[0, 2\pi]$ is
 - (a) -1

- (b) 1
- (c) 0
- (d) π
- (e) $-\pi$

- 10. The Inflection point of $f(x) = (1-x)e^x$ is
 - (a) $\left(-1, \frac{2}{e}\right)$

- (b) $\left(-2, \frac{3}{e^2}\right)$
- (c) (0,1)
- (d) (1,0)
- (e) $\left(\frac{1}{2}, \frac{\sqrt{e}}{2}\right)$

- The horizontal asymptote of $f(x) = \left(\frac{x}{x+2}\right)^x$ is 11.

- (a) $y = e^{-2}$ (b) $y = e^{-1}$ (c) y = 1
- (d) y = e
- (e) y = 2

12. The slant asymptote of

$$f(x) = x + \frac{1}{x}$$

is

(a) y = x

- (b) y = x + 1
- (c) y = x 1
- $(d) y = x + \frac{1}{2}$
- (e) $y = x \frac{1}{2}$

- 13. Starting with $x_1 = -1$, using Newton's Method to find the second approximate root, x_2 , for $x^7 + 4 = 0$, gives:
 - (a) $-\frac{10}{7}$

- (b) $-\frac{4}{7}$
- (c) $-\frac{12}{7}$
- (d) $-\frac{8}{7}$
- (e) $-\frac{9}{7}$

- 14. If the graph of a function f(x) passes through (1,6) and the slope of its tangent line at (x, f(x)) is 2x + 1, then f(2) =
 - (a) 10

- (b) 4
- (c) 2
- (d) 6
- (e) 8

15.
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) =$$

- (a) $\frac{1}{2}$
- (b) ∞
- (c) 1
- (d) e
- (e) $-\frac{1}{e}$

$$16. \quad \lim_{x \to 0} x^4 \sin\left(\frac{1}{x}\right) =$$

- (a) 0
- (b) -1
- (c) ∞
- (d) 1
- (e) $-\infty$

17. $\lim_{x\to 1} \cos(\pi[x])$, (where [x] denotes the greatest integer function)

(a) does not exists

(correct)

- (b) equals 1
- (c) equals -1
- (d) equals 0
- (e) equals $\frac{1}{2}$

18. If $f'(x) = \sinh x + 2 \cosh x$ and f(0) = 2, then $f(\ln 2) =$

(a) $\frac{15}{4}$

- (b) $\frac{7}{2}$
- (c) 4
- (d) 4 ln 2
- (e) $\ln 2(e e^{-1})$

- 19. One statement is False about the function $f(x) = \frac{x^2}{x^2 + 1}$.
 - (a) The Range of f(x) is [0, 1]

- (b) The x and y intercepts are both 0
- (c) y = 1 is a horizontal asymptote
- (d) f(x) is decreasing over $(-\infty, 0)$
- (e) f(x) has neither vertical asymptote nor slant asymptote.

20. The value(s) of m that make the function

$$f(x) = \begin{cases} \sin 2x, & x \le 0 \\ mx, & x > 0 \end{cases}$$

differentiable everywhere is (are)

(a) m = 2

- (b) m = 0
- (c) all real numbers
- (d) all negative numbers
- (e) $m = 0, m = \frac{1}{2}$

- 21. The Absolute maximum value of $f(t) = 2\cos t + \sin 2t$ over $\left[0, \frac{\pi}{2}\right]$ is
 - (a) $\frac{3}{2}\sqrt{3}$

- (b) 2
- (c) 0
- (d) $2\sqrt{3}$
- (e) 1