King Fahd University of Petroleum and Minerals Department of Mathematics Math 101 Major Exam II 213 July 25, 2022 Net Time Allowed: 120 Minutes

MASTER VERSION

(correct)

1. Consider the function

$$f(x) = \begin{cases} x^2 + b & \text{if } x \le 2\\ ax + 3 & \text{if } x \ge 2 \end{cases},$$

If f differentiable everywhere, then a + b =

- (a) 11
- (b) 8
- (c) 15
- (d) 10
- (e) 13

2. If
$$g(x) = \frac{x}{e^x}$$
, then $g^{(101)}(0) =$

- (a) 101
- (b) 100
- (c) -101
- (d) -100
- (e) 0

3. If
$$f(x) = \frac{xe^x}{x^2 + e^x}$$
, then $f'(0) =$

- (a) 1(b) e(c) 0
- (d) e^{-1}
- (e) e^2

- 4. The equations of the tangent line(s) to the graph of $f(x) = x^2 6x + 9$ that pass through the origin (0,0) are:
 - (a) y = 0 and y = -12x
 - (b) y = x and y = -12x
 - (c) y = 0 and y = 12x
 - (d) y = x and y = 12
 - (e) y = 0 and y = x

5.
$$\lim_{x \to \frac{\pi}{6}} \frac{2\sin x - 1}{x - \frac{\pi}{6}} =$$
(a) $\sqrt{3}$
(b) $\frac{1}{2}$
(c) 0

(e) DNE

6. If
$$f(x) = \frac{(\tan x) - 1}{\sec x}$$
, then $f'\left(\frac{\pi}{4}\right) =$

(a)
$$\sqrt{2}$$

(b) 1
(c) 0
(d) $-\frac{2}{\sqrt{2}}$
(e) $\frac{1}{\sqrt{2}}$

7. If F(x) = f(3f(4f(x))), where f(0) = 0 and f'(0) = 2, then F'(0) = 0

- (a) 96
- (b) 48
- (c) 32
- (d) 24
- (e) 192

8. The slope of the line tangent to the curve $\tan xy = xy^3 + 2y^2 - 8$ at the point (0, 2) is

(a) $-\frac{3}{4}$ (correct) (b) 2 (c) 0 (d) $\frac{3}{4}$ (e) $\frac{4}{3}$

MASTER

(correct)

9. If $5x^2 + 2xy + 2y^2 = 9$, then y'' at the point (1, 1) is

(a) -3 (correct)

- (b) 16
- (c) 8
- (d) -4
- (e) 4

10. For any
$$x > 0$$
, $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$

- (a) e^x
- (b) *e*
- (c) e^n
- (d) 1
- (e) DNE

11. If
$$y = (\sqrt{x})^x$$
, then $y'(2) =$

(a)
$$1 + \ln 2$$
 (correct)

(b)
$$2\sqrt{2}$$

(c)
$$1$$

(d)
$$1 + \ln(\sqrt{2})$$

(e) $\frac{1}{2} + \ln(\sqrt{2})$

- 12. A particle is moving according to a law of motion $s(t) = \sin\left(\frac{\pi t}{2}\right)$ where t is measured in seconds and s in meters. Then, the total distance, in meters, traveled by the particle during the time interval $0 \le t \le 2$ is equal to
 - (a) 2
 - (b) 1
 - (c) = 0
 - (d) 3
 - (e) 4

MASTER

(correct)

13. A spotlight on the ground shines on a wall 10 meters away. A woman 2m tall walks from the spotlight towards the wall at a speed of 3 m/s. When the woman is 4m from the building, the length of her shadow on the wall is decreasing at a rate of

(a)
$$\frac{5}{3}m/s$$
 (correct)
(b) $\frac{30}{8}m/s$
(c) $\frac{5}{9}m/s$
(d) $\frac{5}{4}m/s$

(e)
$$\frac{10}{9}m/s$$

- 14. If we use linear approximation (or differentials) to estimate $(1.009)^9$, then we get $(1.009)^9 \approx$
 - (a) 1.081
 - (b) 18.1
 - (c) 1.81
 - (d) 1.0081
 - (e) 1.00081

15. The curve $y = x^2 - 2x + \cos(\ln x)$ has a horizontal tangent line at x =

$$(a) \quad 1$$

- (b) 0
- (c) *e* (d) 2
- (u) 2 1
- (e) $\frac{1}{e}$

16. If
$$y = x \sin^{-1} x + \sqrt{1 - x^2}$$
, then $\frac{dy}{dx} =$

(a)
$$\sin^{-1} x$$
 (correct)
(b) $x \sin^{-1} x$
(c) $\sin^{-1} x + \frac{2x}{\sqrt{1-x^2}}$
(d) $\sin^{-1} x - \frac{2x}{\sqrt{1-x^2}}$
(c) $2x$

(e)
$$\frac{2x}{\sqrt{1-x^2}}$$

MASTER

MASTER

17. Consider the function $y = f(x) = 2^{x^2+1} + \log_2 x$. The rate of change of y with respect to x when x = 1 is

(a)
$$8 \ln 2 + \frac{1}{\ln 2}$$
 (correct)
(b) $64 \ln 2 + \frac{1}{\ln 2}$
(c) $1 + 128 \ln 2$
(d) $16 + \frac{1}{\ln 2}$
(e) $128 + \frac{1}{\ln 2}$

18. A linearization L(x) of the function $f(x) = \sqrt{x} + \sin(x-1)$ at a = 1 is

(a)
$$L(x) = \frac{3}{2}x - \frac{1}{2}$$
 (correct)
(b) $L(x) = \frac{3}{2}x + \frac{1}{2}$

(c)
$$L(x) = \frac{3}{2}x - \frac{3}{2}$$

(d) $L(x) = \frac{3}{2}x + \frac{3}{2}$
(e) $L(x) = \frac{1}{2}x - \frac{1}{2}$