1. Let

$$f(x) = \begin{cases} x+b & \text{if } 0 < x < 2\\ ax^2 + 1 & \text{if } 2 \le x \le 4 \end{cases}$$

If f is continuous at x = 2, then 4a - b =

(a) 1

(correct)

- (b) 3
- (c) -1
- (d) 4
- 2 (e)

- The sum of all values of x at which the tangent lines to the graph of 2. $y = \frac{2x-1}{3x+1}$ are parallel to the line 4x - 5y + 1 = 0 is
 - $\begin{array}{r}
 -\frac{2}{3} \\
 -\frac{4}{5} \\
 -1 \\
 -\frac{1}{4} \\
 -\frac{3}{5}
 \end{array}$

- (b)
- (c)
- (d)
- (e)

- 3. If h(x) = xf(x)g(x), with f(1) = 2, g(1) = 2, f'(1) = 1 and g'(1) = 1, then h'(1) =
 - (a) 8

- (b) 4
- (c) 1
- (d) 6
- (e) 5

- 4. If $\lim_{x\to 0} \frac{\sqrt{b-ax}-2}{x} = 3$, then a + b =
 - (a) -8

- (b) 8
- (c) -6
- (d) 6
- (e) 0

- 5. If $f(x) = \frac{1}{2}x + 2$, then the largest number $\delta > 0$ such that |f(x) 3| < 0.45 whenever $0 < |x 2| < \delta$ is equal to
 - (a) $\frac{9}{10}$

- (b) 1
- (c) $\frac{11}{10}$
- (d) $\frac{12}{10}$
- (e) $\frac{8}{10}$

- 6. If M and N are the numbers of relative maximum points and relative minimum points of the function $f(x) = 5x^{4/5}(x-1)^2$ respectively, then 2M + N =
 - (a) 4

- (b) 3
- (c) 6
- (d) 5
- (e) 2

- 7. The absolute maximum of the function $f(x) = \frac{x^2}{x-2}$ on [-2,1] is
 - (a) 0

- (b) -1
- (c) 8
- (d) 1
- (e) 2

- 8. If $x^2y 4x = 5$, then $\frac{d^2y}{dx^2}$ at the point (-1,1) is equal to
 - (a) 22

- (b) 38
- (c) 14
- (d) 6
- (e) 24

- 9. The sum of all values of x at which the function $f(x) = \frac{-4x}{\sqrt{2x-1}}$ has a horizontal tangent line is
 - (a) 1

- (b) $\frac{3}{2}$
- (c) -1
- (d) $-\frac{3}{2}$
- (e) 0

10. The sum of all x-coordinates of the points at which the curve

$$x^2 - 5x + 3y^3 + 6 = 0$$

has vertical tangent line is

(a) 5

- (b) 6
- (c) 4
- (d) 3
- (e) 2

- 11. The sum of all values of x at which the graph of $f(x) = \frac{x}{e \ln x}$ has a point of inflection is
 - (a) e^2

- (b) e^{-2}
- (c) ln 2
- (d) ϵ
- (e) e^{-1}

12. If (-12,0) is the largest open interval over which the graph of

$$f(x) = x^4 + ax^3$$

is concave downward, then a =

(a) 24

- (b) 12
- (c) 15
- (d) 27
- (e) 19

13.
$$\lim_{x \to -\infty} \left(2x + \sqrt{4x^2 - x} \right) =$$

(a) $\frac{1}{4}$

(correct)

- (b) (
- (c) $\frac{1}{2}$
- (d) 2
- (e) does not exist

14. If
$$\lim_{x \to -\infty} \left(\frac{3x - 2}{\sqrt{4x^2 + 5}} \right) = L_1$$
 and $\lim_{x \to \infty} \left(\frac{3x - 2}{\sqrt{4x^2 + 5}} \right) = L_2$, then $L_1 - L_2 =$

(a) -3

- (b) $-\infty$
- (c) ∞
- (d) $-\frac{3}{2}$
- (e) 0

- 15. If $f(x) = \frac{2x^3 3x + 5}{x^2 + x}$, then an equation of the slant asymptote for the graph of f is
 - (a) y = 2x 2

- (b) y = 2x 3
- (c) y = x + 3
- (d) y = 3x + 1
- (e) y = 3x 2

16. The function

$$f(x) = \frac{2}{x \ln x}$$

has

(a) two vertical and one horizontal asymptotes

- (b) one vertical and one horizontal asymptotes
- (c) no vertical and one horizontal asymptote
- (d) one vertical and no horizontal asymptote
- (e) two vertical and no horizontal asymptotes

17. If y = 0 and y = 5 are two horizontal asymptotes of the function

$$f(x) = \frac{ae^x + be^{-x}}{2e^x + 3e^{-x}}, \quad b > 0,$$

then 5a + b =

(a) 15

(correct)

- (b) 5
- (c) 6
- (d) 10
- (e) 30

- 18. If an open box of maximum volume is to be made from a square piece of material, 30 cm on a side, by cutting equal squares from the corners and turning up the sides, then the sum of the dimensions of the box is
 - (a) 45 cm

- (b) 42 cm
- (c) 48 cm
- (d) 40 cm
- (e) 30 cm

- 19. The area of the largest rectangle that can be inscribed in the region bounded by the x-axis, the y-axis and the line $y = 3 \frac{1}{2}x$ is equal to
 - (a) $\frac{9}{2}$

- (b) 3
- (c) $\frac{7}{2}$
- (d) 6
- (e) 9

- 20. Using the tangent line approximation of $f(x) = \sqrt{x+9}$ at the point (0,3), $\sqrt{9.03}$ can be approximated as
 - (a) 3.005

- (b) 3.004
- (c) 3.003
- (d) 3.002
- (e) 3.001

21. The radius of a spherical balloon is measured as 8 cm, with a possible error of 0.02 cm. Using differentials, the percent error in computing the volume of the sphere is

(Hint:
$$V = \frac{4}{3}\pi r^3$$
)

(a) 0.75%

(correct)

- (b) 0.25 %
- (c) 0.50 %
- (d) 0.05%
- (e) 0.45%

- 22. If f(x) + f''(x) = 1 for all x, and F(x) is an anti-derivative of f(x) such that F(0) = -1, F(1) = 2 and f'(0) = 2, then f'(1) =
 - (a) 0

- (b) -1
- (c) 1
- (d) 2
- (e) -2

23. If
$$f''(x) = \frac{2}{x^2}$$
, $f'(1) = 4$ and $f(1) = 3$, then $2f(2) - f(4) =$

(a) -3

(correct)

- (b) $8 \ln 2 + 3$
- (c) $-4 \ln 2 + 21$
- (d) $4 \ln 2 + 18$
- (e) 15

24.
$$\lim_{x \to 3^+} \left[4(x-3) \right]^{(x-3)} =$$

(a) 1

- (b) 2
- (c) 3
- (d) 4
- (e) 5

25. If f''(x) is a continuous function, then

$$\lim_{h \to 0} \frac{3f(x+4h) - 7f(x) + 4f(x-3h)}{6h^2} =$$

(a) 7f''(x)

(correct)

- (b) 3f'(x)
- (c) 4f''(x)
- (d) 3f''(x) + 4f'(x)
- (e) f''(x)

- 26. If $f(x) = \cosh(\ln x)$, then f'(1/5) =
 - (a) -12

- (b) -10
- (c) 24
- (d) -26
- (e) -1

27. The function $f(x) = x \sinh(x-1) - \cosh(x-1)$ has

(a) one relative minimum

(correct)

- (b) one relative maximum
- (c) two relative extrema
- (d) no relative minimum
- (e) two critical points

$$28. \quad \lim_{x \to 0} \frac{1 - \cos x}{x^2} =$$

- (a) $\frac{1}{2}$
- (b) 0
- (c) 1
- (d) ∞
- (e) $-\infty$

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	A	С	D	Е
2	A	A	В	D	Е
3	A	D	В	Е	A
4	A	E	D	Е	С
5	A	В	В	A	A
6	A	С	A	Е	A
7	A	E	D	A	A
8	A	С	Е	A	E
9	A	Е	A	С	С
10	A	В	A	D	В
11	A	E	Е	A	С
12	A	Е	A	A	Е
13	A	D	A	D	В
14	A	D	В	С	D
15	A	В	D	В	A
16	A	С	В	D	В
17	A	Е	Е	С	D
18	A	С	С	Е	Е
19	A	В	Е	С	В
20	A	D	A	С	A
21	A	A	В	В	Е
22	A	A	D	A	С
23	A	В	Е	D	С
24	A	В	С	D	С
25	A	Е	С	D	A
26	A	A	A	В	С
27	A	В	D	A	В
28	A	Е	С	С	С