1. 
$$\lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^2} =$$

- (a) 0 \_\_\_\_\_(correct)
- (b) 1
- (c) -1
- (d)  $\infty$
- (e)  $-\infty$

## 2. One statement is true about

$$g(x) = \frac{x^2 + x - 6}{|x - 2|}$$

- (a)  $\lim_{x\to 2} g(x)$  does not exist \_\_\_\_\_(correct)
- (b) x = 2 is a vertical asymptote
- (c)  $\lim_{x\to 2^+} g(x)$  does not exist
- (d)  $\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{+}} g(x)$
- (e)  $\lim_{x \to 2^{-}} g(x) = -\infty$

- 3. If the constant a will make the function  $f(x) = \begin{cases} ae^{x-1} + 3, & x < 1 \\ \tan^{-1}(x-1) + 2, & x \ge 1 \end{cases}$  continuous over  $(-\infty, \infty)$ , then the value of  $a^2 + a$  equal
  - (a) 0 \_\_\_\_\_(correct
  - (b) 1
  - (c) -1
  - (d)  $\frac{1}{e^2}$
  - (e)  $\frac{-1}{e^2}$

- 4. The domain of  $f(x) = \frac{1}{[x] x}$ , where [] denotes the greatest integer function is
  - (a) All real numbers except the integers \_\_\_\_\_(correct)
  - (b) All real numbers except the positive integers
  - (c) All non-negative rational numbers
  - (d) Set of Natural numbers only
  - (e) All real numbers except zero

5. 
$$\lim_{x \to \frac{\pi}{6}} \frac{\frac{1 + \csc x}{1 - \csc x} + 3}{x - \frac{\pi}{6}} =$$

- (a)  $-4\sqrt{3}$  \_\_\_\_\_(correct)
- (b)  $2\sqrt{3}$
- (c)  $-2\sqrt{3}$
- (d)  $\pi\sqrt{3}$
- (e)  $-\pi\sqrt{3}$

6. If 
$$f(x) = \begin{cases} \cos x, & x < 0 \\ ax + b, & x \ge 0 \end{cases}$$
 is differentiable everywhere, then  $b - a = 0$ 

- (a) 1 \_\_\_\_\_(correct)
- (b) 0
- (c) -1
- (d) 2
- (e) -2

7. One statement is True about  $f(x) = |\sin x|$  and  $g(x) = \sin |x|$ 

- (a) The domain of g'(x) is  $(-\infty, \infty) \{0\}$  \_\_\_\_\_(correct)
- (b) The range of g(x) is [0,1]
- (c) The domain of f(x) is  $[0, \infty)$
- (d) The domain of f' is all  $x \neq n\pi$  where n is positive integer
- (e) The range of f(x) is (0,1]

8.  $\lim_{x\to 4}\left(4-\frac{x}{2}\right)=2$  then the value of  $\delta$  such that  $|f(x)-L|<\epsilon$  whenever  $0<|x-4|<\delta$  is

- (a)  $2\epsilon$  \_\_\_\_\_(correct)
- (b) 4 ε
- (c)  $\frac{\epsilon}{2}$
- (d)  $\frac{\epsilon}{4}$
- (e) ε

9. 
$$\lim_{x \to 0} \frac{\cos x - 4\sin 3x - 1}{2x} =$$

- (a) -6 \_\_\_\_\_(correct)
- (b) 0
- (c) 6
- (d) -4
- (e) 4

10. 
$$\lim_{x \to \ln 3} \frac{e^{3x} - 27}{e^{2x} - 9} =$$

- (a)  $\frac{9}{2}$  \_\_\_\_\_(correct)
- (b) 0
- (c) 1
- (d) 9
- (e) ln 3

11. Let  $f(x) = \sqrt{2x} - 4$ , then  $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$ 

- (a)  $\frac{1}{\sqrt{2x}}$  ——— \_(correct)
- (b)  $\frac{1}{2\sqrt{x}}$ (c)  $\frac{2}{\sqrt{x}}$ 

  - (d)  $\frac{1}{\sqrt{x}}$
  - (e)  $2\sqrt{x}$

12. The vertical asymptotes of the graph

$$f(x) = \frac{\ln(x^2 - 4)}{(x - 1)(x + 4)}$$

are

(a) 
$$x = \pm 2, x = -4$$
 \_\_\_\_\_(correct)

- (b)  $x = \pm 2, x = 1$
- (c) x = 1, x = -4
- (d) x = 1
- (e)  $x = \pm 2$ , x = -4, x = 1

- 13.  $\lim_{x \to \frac{1}{2}^{-}} (x^2 \sec \pi x) =$ 
  - (a)  $\infty$  \_\_\_\_\_(correct)
  - (b)  $-\infty$
  - (c) 0
  - (d)  $\frac{1}{4}$
  - (e)  $\frac{1}{2}$

- 14. Let  $f(x) = \frac{x \sin 2x}{\sin^2 x}$ , which of the following is false?
  - (a) The graph of f has vertical asymptote of x = 0 \_\_\_\_\_(correct)
  - (b) The graph of f has vertical asymptote of  $x = \pi$
  - (c) The graph of f has vertical asymptote of  $x=2\pi$
  - (d) f is discontinuous at x = 0
  - (e)  $\lim_{x \to 0} f(x) = 2$

- 15. If the line y = -4x + 1 is tangent to the graph of the function  $f(x) = k x^2$ , then k =
  - (a) k = -3 \_\_\_\_\_(correct)
  - (b) k = -4
  - (c) k = 4
  - (d) k = 3
  - (e) k = 2

- 16. Let  $p(x) = \frac{g(x)+1}{f(x)}$ , g(2) = -1, g'(2) = 2, f(2) = 3, then p'(2) = 3
  - (a)  $\frac{2}{3}$  \_\_\_\_\_(correct)
  - (b) 0
  - (c)  $\frac{1}{3}$
  - (d)  $\frac{4}{9}$
  - (e)  $\frac{5}{9}$

17. Let  $f(x) = \frac{1}{2}x\sin(2x)$ , then  $f'\left(\frac{\pi}{4}\right) =$ 

- (a)  $\frac{1}{2}$  \_\_\_\_\_(correct)
- (b)  $\frac{1}{2} + \frac{\pi}{4}$
- (c)  $\frac{\pi}{4}$
- (d)  $\frac{\pi}{4} + \frac{1}{4}$
- (e)  $\frac{1}{2} \frac{\pi}{4}$

18.  $f(x) = \frac{\cos x}{1 - \sin x}$ , then f'(x) =

- (a)  $\frac{1}{1-\sin x}$  \_\_\_\_\_(correct)
- (b)  $\frac{\sin x}{(1-\sin x)^2}$
- (c)  $\frac{-\sin x}{1-\sin x}$
- (d)  $\frac{1}{(1-\sin x)^2}$
- (e) 0

## Answer Counts

| V | A | В | C | D | E |
|---|---|---|---|---|---|
| 1 | 5 | 5 | 2 | 3 | 3 |
| 2 | 5 | 3 | 2 | 5 | 3 |
| 3 | 2 | 1 | 7 | 4 | 4 |
| 4 | 1 | 5 | 2 | 4 | 6 |

| Q  | MASTER | CODE01         | CODE02         | CODE03 | CODE04 |
|----|--------|----------------|----------------|--------|--------|
| 1  | A      | В 2            | D 4            | C 5    | D 18   |
| 2  | A      | E 1            | A 18           | C 4    | D 10   |
| 3  | A      | C 9            | A 6            | C 11   | E 12   |
| 4  | A      | E 12           | C 17           | E 10   | В 13   |
| 5  | A      | B 4            | D 8            | B 12   | D 17   |
| 6  | A      | A 17           | E 15           | C 13   | C 16   |
| 7  | A      | D 15           | D 13           | C 3    | E 4    |
| 8  | A      | E 6            | A 12           | C 15   | E 2    |
| 9  | A      | A 7            | D 9            | D 18   | В 9    |
| 10 | A      | B <sub>8</sub> | D 14           | A 16   | E 5    |
| 11 | A      | A 10           | E <sub>3</sub> | D 2    | E 7    |
| 12 | A      | D 14           | A 10           | A 17   | A 1    |
| 13 | A      | B 5            | C 16           | D 7    | D 11   |
| 14 | A      | C 18           | A 1            | E 6    | B 8    |
| 15 | A      | D 16           | E 5            | E 1    | E 14   |
| 16 | A      | A 3            | В 2            | D 9    | C 6    |
| 17 | A      | В 11           | В 7            | C 8    | Вз     |
| 18 | A      | A 13           | В 11           | E 14   | B 15   |