- 1. Starting with $x_1 = 2$, the second approximation x_2 to the root of the equation $x^3 2x 5 = 0$ is
 - (a) 2.10 _____(correct)
 - (b) 1.99
 - (c) 1.98
 - (d) 2.01
 - (e) 2.21

- 2. If the maximum value for $f(x) = 2\sin x \cos 2x$ on $[0, 2\pi]$ happens at x = a and the minimum value of f(x) is b, then a + b is equal to
 - (a) $\frac{\pi 3}{2}$ _____(correct)
 - (b) $1 + \pi$
 - (c) 1π
 - (d) $\frac{\pi 1}{2}$
 - (e) $\frac{\pi}{3}$

- 3. $f(x) = x^{4/5} (x-4)^2$ has
 - (a) 3 critical numbers _____(correct)
 - (b) 2 critical numbers
 - (c) 1 critical number
 - (d) 4 critical numbers
 - (e) no critical numbers

- 4. If the maximum value of $f(x) = x \tan^{-1}(x)$ over [0, 4] is A, then
 - (a) A > 0 _____(correct)
 - (b) A < 0
 - (c) A = 0
 - (d) |A| > 4
 - (e) $\pi |A| < 4$

- 5. $f(x) = x^{-2} \ln x$ is increasing on
 - (a) $(0, \sqrt{e})$ _____(correct)
 - (b) (e, ∞)
 - (c) (\sqrt{e}, ∞)
 - (d) $(0,\infty)$
 - (e) $\left(\frac{1}{2}e, e^2\right)$

- 6. $f(x) = (3-x)e^{x-3}$ is decreasing over
 - (a) $(2, \infty)$ _____(correct)
 - (b) $(-3, \infty)$
 - (c) $(\sqrt{3}, \infty)$
 - (d) $(-\infty,3)$
 - (e) $(-\infty, \sqrt{3})$

- 7. The constant c that satisfies the Roll's Theorem of $f(x) = \frac{x^2 2x 3}{x + 2}$ over [-1, 3] is equal to:
 - (a) $-2 + \sqrt{5}$ _____(correct)
 - (b) $-2 \sqrt{5}$
 - (c) 0
 - (d) $2\sqrt{5} 1$
 - (e) $1 2\sqrt{5}$

- 8. If $f(x) = Ax^2 + Bx + C$ is any polynomial over any closed interval [a, b], then, the value of c that guarantee the mean value theorem is equal to:
 - (a) $\frac{a+b}{2}$ _____(correct)
 - (b) $\frac{b-a}{2}$
 - (c) $\frac{a+b+c}{b-a}$
 - (d) $\frac{a-c}{b-a}$
 - (e) $\frac{b^2 a^2}{a + b + c}$

- 9. One statement only is True about $f(x) = e^{\tan^{-1} x}$
 - (a) f is increasing on its domain _____(correct)
 - (b) f is decreasing over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
 - (c) The domain of f is (-e, e)
 - (d) The range of f(x) is $(0, \infty)$
 - (e) f passes through the origin

- 10. $y = \ln|\csc x + \cot x|$, then $\frac{dy}{dx} =$
 - (a) $-\csc x$ _____(correct)
 - (b) $\csc x$
 - (c) $\sec x$
 - (d) $-\sec x$
 - (e) $\tan x$

11. $f(x) = \sqrt{25 - x^2}$, then the slope of the tangent line at the point (4,3) is

- (a) $\frac{-4}{3}$
- (b) $\frac{4}{3}$ (c) $\frac{-2}{5}$ (d) $\frac{2}{5}$
- (e) 0

12. If $F(x) = \sqrt{g(x^2)}$, and g(4) = 4, g'(4) = 3 then F'(2) = 3

- (b) 4
- (c) $\frac{3}{2}$ (d) $\frac{3}{4}$
- (e) $\frac{3}{8}$

13.
$$y = (\ln x)^{x^2}$$
, then $\frac{dy}{dx}|_{x=e} =$

- (correct)
- (b) e^2
- (c) $\frac{1}{e}$
- (d) 2e
- (e) $\frac{1}{e^2}$

14.
$$x^2 + y^2 = 4$$
, then $\frac{d^2y}{dx^2} =$

- (a) $\frac{-4}{y^3}$ _____ _(correct)
- (b) $\frac{-4}{y^2}$
- (c) $\frac{-x}{y^3}$
- (d) $\frac{x^2}{y^2}$ (e) $\frac{-4}{y}$

15. Let
$$f(x) = \frac{x+6}{x-2}$$
, $x > 2$, then $(f^{-1})'(3) =$

- (a) -2 _____(correct)
- (b) $-\frac{1}{8}$
- (c) 2
- (d) 8
- (e) $-\frac{1}{2}$

16. Let
$$y = x \tan^{-1}(2x) - \frac{1}{4} \ln(1 + 4x^2)$$
, then $\frac{dy}{dx} =$

- (a) $\tan^{-1}(2x)$ _____(correct)
- (b) $x \tan^{-1}(2x)$
- (c) $\tan^{-1}(2x) \frac{1}{1+4x^2}$
- (d) $\tan^{-1}(2x) + \frac{1}{1+4x^2}$
- (e) $\tan^{-1}\left(\frac{x}{1+4x^2}\right)$

17. All edges of a cube are expanding at a rate 4 centimeters per second. How fast the volume changing when each edge is 1 centimeter?

(a) 12 centimeter³ per second ______(correct)

- (b) 3 centimeter³ per second
- (c) 4 centimeter³ per second
- (d) 1 centimeter³ per second
- (e) 8 centimeter³ per second

- 18. A water tank has the shape of an inverted circular cone with base radius 2m and height 4m. If water is being pumped into the tank at a rate $2m^3/\min$, at which rate the water level is rising when the water is 3m deep. $\left(v = \frac{1}{3}\pi r^2 h\right)$
 - (a) $\frac{8}{9\pi} m/\min$ _____(correct)
 - (b) $\frac{8}{3} \pi m / \min$
 - (c) $\frac{\pi}{9} m / \min$
 - (d) $8\pi m/\min$
 - (e) $9 \pi m / \min$