- 1. Which one of the following statements is true about $g(x) = \frac{x-1}{|x-1|}$,
 - (a) $\lim_{x\to 1} g(x)$ does not exist _____(correct)
 - (b) $\lim_{x \to 1} g(x) = 0$
 - (c) $\lim_{x \to 1} g(x) = 1$
 - (d) x = 1 is a vertical asymptote
 - (e) $\lim_{x \to -1} g(x) = -\infty$

- 2. $\lim_{x\to 1} \left(\frac{2x-2x^2}{1-x}\right) = 2$, then the largest value of δ such that $|f(x)-2| < \epsilon$ whenever $0<|x-1|<\delta$ is
 - (a) $\frac{\epsilon}{2}$ _____(correct)
 - (b) ϵ
 - (c) 2ϵ
 - (d) 4ϵ
 - (e) $\frac{\epsilon}{4}$

$$3. \lim_{x \to 1} \frac{\sin(x-1)}{x^2 - 1} =$$

- (a) $\frac{1}{2}$ _____(correct)
- (b) 0
- (c) $-\infty$
- (d) ∞
- (e) 1

4.
$$\lim_{x \to 0} \frac{2 - 2e^{-x}}{e^x - 1} =$$

- (a) 2 _____(correct)
- (b) 1
- (c) 0
- (d) ∞
- (e) $-\infty$

5.
$$\lim_{x \to 2^{-}} [\![\frac{x}{2}]\!] - \frac{x}{2} =$$

(where [x] is the greatest integer function)

- (a) -1 _____(correct)
- (b) 0
- (c) 1
- (d) does not exist
- (e) 2

6. If the constant a > 0 such that the function

$$f(x) = \begin{cases} \frac{x^3 - a^3}{x - a} & x \neq a \\ 12 & x = a \end{cases}$$

is continuous over $(-\infty, \infty)$, then $a^2 + a =$

- (a) 6 _____(correct)
- (b) 2
- (c) 8
- (d) 0
- (e) 4

7. Given
$$g(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
, then

- (a) g is differentiable at x = 0 and g'(0) = 0 _____(correct)
- (b) g is differentiable at x = 0 and g'(0) = 1
- (c) g is not differentiable at x = 0
- (d) g is not continuous at x = 0
- (e) $\lim_{x \to 0} g(x) = 1$

- 8. Let $p(x) = g(x) (f(2x))^2$, g'(1) = 0, g(1) = 2, f(2) = 2, f'(2) = 3, then p'(1) = 3
 - (a) 48 _____(correct)
 - (b) 46
 - (c) 24
 - (d) 12
 - (e) 32

- 9. Let $g(x) = \frac{x(x^2+1)^2}{\sqrt{2x^3-1}}$, then g'(2) =
 - (a) $\frac{13\sqrt{15}}{3}$ (correct)
 - (b) $\frac{\sqrt{5}}{3}$
 - $(c) \ \frac{5\sqrt{15}}{3}$
 - (d) $\sqrt{5}$
 - (e) $\frac{13\sqrt{15}}{6}$

- 10. The slope of the tangent line to the graph $y^2 + \ln xy = 2$ at the point (e, 1) is
 - (a) $\frac{-1}{3e}$ ______ (correct)
 - (b) $\frac{1}{e}$ (c) $\frac{e}{3}$

 - (d) $\frac{-1}{e}$
 - (e) $\frac{-3}{e}$

11. If $\tan^{-1}(\sqrt{x+y}) = 1$, then $\frac{dy}{dx} = 1$

- (a) -1 _____(correct)
- (b) 1
- (c) 0
- (d) 2
- (e) -2

- 12. A ladder 5 meters long is leaning against the wall of house. The base of the ladder is pulled away from the wall at rate $\frac{1}{2}$ meter per second. The rate at which the angle between the ladder and wall is changing when the base of the ladder is 4 meters from the wall is:
 - (a) $\frac{1}{6} rad/sec$ _____(correct)
 - (b) $\frac{1}{4} rad/sec$
 - (c) $\frac{1}{3} rad/sec$
 - (d) $\frac{1}{9} rad/sec$
 - (e) $\frac{1}{2} rad/sec$

- 13. The number of vertical asymptotes of $f(x) = \frac{\ln(x^2 4)}{(x 1)(x 3)}$ is
 - (a) 3 _____(correct)
 - (b) 0
 - (c) 1
 - (d) 2
 - (e) 4

- 14. The graph of $f(x) = e^{(2/x)}$ is concaving downward over the interval:
 - (a) $(-\infty, -1)$ _____(correct)
 - (b) $(-\infty, e)$
 - (c) $(-\infty, \sqrt{e})$
 - (d) $(-\infty, 2)$
 - (e) $\left(-\infty, \frac{1}{2}\right)$

- 15. One statement is **False** about $f(x) = \frac{\sin x}{x}$
 - (a) The maximum value of f(x) is 1 ______(correct)
 - (b) f(x) is an even function
 - (c) $\lim_{x \to 0} f(x) = 1$
 - (d) y = 0 is a horizontal asymptote for f(x)
 - (e) f(x) has no vertical asymptote

- 16. If the inflection points for $f(x) = \frac{(x+1)^2}{1+x^2}$ happen at $x = \pm \sqrt{b}$, then the possible value of b is
 - (a) 3 _____(correct)
 - (b) 2
 - (c) 1
 - (d) $\frac{1}{2}$
 - (e) $\frac{1}{3}$

17.
$$\lim_{x \to \infty} \left(\frac{1}{2x + \cos x} \right)$$

- (a) equals 0 _____(correct)
- (b) equals 1
- (c) equals $\frac{2}{\pi}$
- (d) limit does not exist
- (e) limit cannot be evaluated

18.
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) =$$

- (a) 1 _____(correct)
- (b) 0
- (c) $+\infty$
- (d) $-\infty$
- (e) -1

19.
$$\lim_{x \to -\infty} \left(2 - \frac{x + x^3}{1 + x + x^2 - 3x^3} \right)$$
 is

- (a) $\frac{7}{3}$ _____(correct)
- (b) $\frac{1}{3}$
- (c) $\frac{-1}{3}$
- (d) $\frac{5}{3}$
- (e) 2

20. The range of $f(x) = \frac{\cos x}{2 + \sin x}$ is

- (a) $\left[\frac{-\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right]$ _____(correct)
- (b) [-1, 2]
- $(c) \left[\frac{-1}{2}, \frac{1}{2}\right]$
- (d) [0,2]
- (e) $\left[\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$

21. The minimum vertical distance between the parabolas $y = x^2 + 1$ and $y = x - x^2$ is

- (a) $\frac{7}{8}$ (b) $\frac{5}{8}$ (c) $\frac{3}{8}$ (d) $\frac{1}{8}$ (e) $\frac{9}{8}$

22. The radius r of a circle increases from 10 m to 10.1 m. Using differential, the estimate of the increase of the area of the circle is

- (a) $102 \pi m^2$ (correct)
- (b) $100 \pi m^2$
- (c) $101 \pi m^2$
- (d) $100.5\pi \, m^2$
- (e) $100.1\pi m^2$

23.
$$\lim_{x \to 1^{-}} (2 - x)^{\tan(\frac{\pi}{2}x)} =$$

- (a) $e^{2/\pi}$ _____ _(correct)
- (b) $e^{-\pi}$
- (c) $e^{-\sqrt{2}}$
- (d) $e^{-\pi}$
- (e) $e^{1/2}$

$$24. \lim_{x \to 0} \left(\frac{\sinh x - x}{x^3} \right) =$$

- (a) $\frac{1}{6}$ (correct)
- (b) $\frac{1}{3}$ (c) $\frac{2}{3}$
- (d) 1
- (e) $\frac{1}{2}$

25. One statement is **False** about $f(x) = \tanh x$

(a)
$$f(\ln x) = \frac{x^2 + 1}{x^2 - 1}$$
 _____(correct)

- (b) f(x) has 2 horizontal asymptotes
- (c) f(x) is an odd function passing through the origin
- (d) f(x) is increasing on its domain
- (e) $f'(x) = \operatorname{sech}^2 x$

$$26. \int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx =$$

(a)
$$\frac{1}{2}x^2 + 2x + \ln x + C$$
 ______(correct)

(b)
$$\frac{1}{2}x^2 + \ln x + C$$

(c)
$$\frac{2}{3}x^{3/2} + 2\sqrt{x} + C$$

(d)
$$\frac{1}{2}x - x\sqrt{x} + C$$

(e)
$$\frac{2}{3}\sqrt{x}(1+\ln x) + C$$

27. The global minimum value of $f(x) = (x-3)\sqrt{x}$ is at the point

- (a) (1,-2) _____(correct)
- (b) (0,0)
- (c) (3,0)
- (d) (4,2)
- (e) $\left(\frac{1}{2}, \frac{-5}{2\sqrt{2}}\right)$

28. Starting with $x_0 = 0$, the second approximation x_2 to the root of the equation $x^3 + x + 1 = 0$ is

- (a) $-\frac{3}{4}$ _____(correct)
- (b) 0
- (c) -1
- (d) $-\frac{5}{4}$
- (e) $-\frac{1}{2}$