- 1. If $f(x) = \frac{2 \frac{1}{x}}{x 3}$, then f'(2) =
 - _(correct)

 - (e) $\frac{3}{2}$

- 2. The slope of the tangent line to the curve $y = \frac{1 + \sec x}{1 \sec x}$ at the point $(\frac{\pi}{3}, -3)$ is equal to
 - (a) $4\sqrt{3}$ _(correct)
 - (b) -8
 - (c) $-4\sqrt{3}$
 - (d) 8
 - (e) $-\sqrt{3}$

- 3. The derivative of $y = \frac{e^x}{2}(\cos x + \sin x)$ is
 - (a) $e^x \cos x$ _____(correct)
 - (b) $e^x \sin x$
 - (c) $\frac{e^x}{2}(\cos x + \sin x)$
 - (d) $\frac{e^x}{2} \left(-\sin x + \cos x \right)$
 - (e) 0

- 4. If $g(x) = \ln\left(\frac{3x^2 2}{2x + 3}\right)^{-2}$, then g'(-1) =
 - (a) 16 _____(correct)
 - (b) -8
 - (c) 8
 - (d) -16
 - (e) -4

- 5. The slope of the normal line to the curve $\sin(\pi xy) = \ln x$ at the point (1,0) is equal to
 - (a) $-\pi$ (correct)
 - (b) $-\frac{1}{\pi e}$ (c) -2π

 - (d) $-\frac{1}{2\pi}$
 - (e) $-\frac{e}{\pi}$

- 6. If x > 0, y > 0 and $y = x^{xy}$, then $\frac{dy}{dx} =$
 - (a) $\frac{y^2(1+\ln x)}{1-xy\ln x}$ (correct)
 - (b) $\frac{y^2(1-\ln x)}{1+xy\ln x}$
 - (c) $\frac{y^2(1+2\ln x)}{1-2xy\ln x}$
 - (d) $\frac{y^2(1+x\ln x)}{1-y\ln x}$
 - (e) $\frac{y(1+\ln x)}{1-xy^2\ln x}$

7. If $x+y-1=\ln(x^2+y^2)$, then $\frac{d^2y}{dx^2}$ at the point (1,0) is equal to

- (a) 0 _____(correct)
- (b) 1
- (c) -1
- (d) -2
- (e) 2

8. If
$$f(x) = \frac{x+6}{x-2}$$
 and $x > 2$, then $(f^{-1})'(3) =$

- (a) -2 _____(correct)
- (b) 2
- (c) -4
- (d) 4
- (e) 6

- 9. The equation of the tangent line to the curve $\arctan(xy) = \arcsin(x+y)$ at (0,0) is
 - (a) y = -x _____(correct)
 - (b) y = x
 - (c) y = 2x
 - (d) $y = \frac{\pi}{4}x$
 - (e) $y = \pi x$

- 10. The voltage V in volts of an electrical circuit is V = IR, where R is the resistance in ohms and I is the current in amperes. R is increasing at a rate of 2 ohms per second, and V is increasing at a rate of 8 volts per second. At what rate is I changing when V = 10 volts and R = 5 ohms?
 - (a) 4/5 amperes per second _____

_(correct)

- (b) 3/5 amperes per second
- (c) 2/5 amperes per second
- (d) 1/5 amperes per second
- (e) 8/5 amperes per second

- 11. An airplane is flying at an altitude of 6 kilometers on a flight path that will take it directly over a radar tracking station. If the distance S between the airplane and the radar station is decreasing at a rate of 400 kilometers per hour when S=10 kilometers, then the speed of the plane is
 - (a) 500 km/h _____(correct)
 - (b) -600 km/h
 - (c) 450 km/h
 - (d) 550 km/h
 - (e) -550 km/h

- 12. Using Newton's Method if the initial guess to approximate the zero of $f(x) = 2x^2 1$ is $x_1 = \frac{1}{2}$, then $x_3 =$
 - (a) $\frac{17}{24}$ _____(correct)
 - (b) $\frac{11}{16}$
 - (c) $\frac{13}{21}$
 - (d) $\frac{5}{8}$
 - (e) $\frac{19}{24}$

- 13. The sum of the extreme values of the function $f(x) = 1 + 4x 6x^{2/3}$ on the interval [-1, 1] is equal to
 - (a) -8 _____(correct)
 - (b) -9
 - (c) -7
 - (d) 0
 - (e) -10

- 14. If $f(x) = 2\sin x \cos 2x$, then the absolute maximum of f over the interval $[0, 2\pi]$ is equal to
 - (a) 3 _____(correct)
 - (b) -1
 - (c) $\frac{3}{2}$
 - (d) $-\frac{3}{2}$
 - (e) 6

15. The value of c in the interval (1,9) that satisfies the conclusion of the Mean Value Theorem for $f(x) = \sqrt{x}$ is

(a) 4 _(correct)

- (b) 3
- (c) 2
- (d) 5
- (e) 6

- 16. If the graph of $f(x) = x^2 x 2$ intersects the x-axis at a and b where a < b and if c is the value between a and b that satisfies Rolle's Theorem, then a + b + c =
 - (a) $\frac{3}{2}$ _(correct)
 - (b) 1
 - (c) $\frac{1}{2}$ (d) $\frac{5}{2}$

 - (e) 2

- 17. If (a, b) is a point on the graph of $f(x) = \frac{x+1}{x-1}$ at which the tangent line is parallel to the line 2y + x = 6, then a + b =
 - (a) -1 or 5 _____(correct)
 - (b) 1 or -5
 - (c) 0 or 3
 - (d) 2 or 3
 - (e) -2 or -3

- 18. If $y = \arcsin x + x\sqrt{1-x^2}$, then $\frac{dy}{dx} =$
 - (a) $2\sqrt{1-x^2}$ _____(correct)
 - (a) $2\sqrt{1-x^2}$ (b) $\frac{1}{\sqrt{x^2-1}} + \frac{x^2}{\sqrt{1-x^2}} \sqrt{1-x^2}$
 - (c) $\frac{-1}{\sqrt{1-x^2}} \frac{x^2}{\sqrt{1-x^2}} + \sqrt{1-x^2}$
 - (d) $-2\sqrt{1-x^2}$
 - (e) $2\sqrt{x^2-1}-1$

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	D 18	B 4	A 17	В в
2	A	D 17	С,	E 3	В
3	A	B 4	B 10	E 15	В 14
4	A	D i	A 17	C 16	С.
5	A	C 15	C 15	C 13	С.
6	A	D 2	Е 11	В в	D 4
7	A	D 11	C 14	B 12	D 10
8	A	Α ,	A s	E s	Сз
9	A	Вв	A ,	D 1	D 13
10	A	D 10	В 13	A 4	D 12
11	A	C ,	D ,	A 11	В 16
12	A	E 13	A 16	E 14	Вь
13	A	E 14	C .	В 2	D 17
14	A	C a	D 2	E 10	A 7
15	A	D 16	E 12	D ,	В 2
16	A	E 5	В 18	D 7	C 18
17	A	E a	Ві	C ,	C 15
18	A	E 12	A 3	D 18	C 11