- 1. A point that lies on the tangent line to the curve $y = \frac{1}{1-x}$ at the point $\left(3, -\frac{1}{2}\right)$ is
 - (a) (5,0) _____(correct)
 - (b) (1,1)
 - (c)(2,0)
 - (d) (-3,2)
 - (e) (-1,1)

- $2. \lim_{\Delta x \to 0} \frac{(-2 + \Delta x)^3 + 8}{\Delta x} =$
 - (a) 12 _____(correct)
 - (b) -12
 - (c) -2
 - (d) 8
 - (e) -8

3. If $y = x^{\ln x}$, then y'(e) =

- (a) 2 _____(correct)
- (b) e
- (c) 1
- (d) 0
- (e) $\frac{1}{e}$

4. The limit $\lim_{x\to\infty} (\sqrt{4x^2 + x} - 2x) =$

- (a) $\frac{1}{4}$ _____(correct)
- (b) ∞
- (c) $-\infty$
- (d) $\frac{1}{2}$
- (e) 2

5. The equation of the tangent line to the curve $9x^2 + 4y^2 = 13$ at the point (1,1) is given by:

(a) 9x + 4y = 13 ______(correct)

- (b) 9x + 4y = 8
- (c) 9x 4y = 9
- (d) 9x 4y = 7
- (e) 9x + 4y = 11

- 6. If y = -2x + 3 is the tangent line to the curve of $f(x) = kx^2$, then k =
 - (a) $-\frac{1}{3}$ _____(correct)
 - (b) -3
 - (c) -2
 - (d) $-\frac{1}{2}$
 - (e) 0

- 7. The sum of all values of c that satisfy the Mean Value Theorem for $f(x) = \frac{x}{x-5}$ on [1, 4] is
 - (a) 3 _____(correct)
 - (b) 7
 - (c) 10
 - (d) 5
 - (e) 9

- 8. A man 2 meters tall walks at a rate of 1.5 meters per second a way from a light that is 5 meters above the ground. The rate at which the length of his shadow is changing when he is 3 meters from the base of the light is equal to
 - (a) 1 m/sec _____(correct)
 - (b) 2 m/sec
 - (c) 1.5 m/sec
 - (d) 0.5 m/sec
 - (e) 2.5 m/sec

- 9. The number x at which the function $f(x) = 2x + \frac{1}{x}$ has a relative minimum is
 - (a) $\frac{1}{\sqrt{2}}$ _____(correct)
 - (b) $-\frac{1}{\sqrt{2}}$
 - (c) 0
 - (d) $\sqrt{2}$
 - (e) $-\sqrt{2}$

10. Which of the following statements is true about the function

$$f(x) = x - \arcsin x$$

- (a) f is decreasing on (-1,1) _____(correct)
- (b) f has a relative minimum at 0
- (c) f has a relative maximum at 0
- (d) f is increasing on (-1,1)
- (e) f is increasing on (-1,0) and decreasing on (0,1)

11. Which of the following statements is true about the graph of $f(x) = e^{-(x-3)^2}$?

- (a) It is concave up on $\left(3 + \frac{1}{\sqrt{2}}, \infty\right)$. _____(correct)
- (b) It is concave up on $(3, \infty)$.
- (c) It is concave up on $\left(3 \frac{1}{\sqrt{2}}, 3 + \frac{1}{\sqrt{2}}\right)$.
- (d) It is concave down on $(-\infty, \infty)$.
- (e) It is concave down on $\left(-\infty, 3 \frac{1}{\sqrt{2}}\right)$.

12. The number of inflection points the function $f(x)=\sin x$ has in the interval $\left[-\frac{5\pi}{2},\frac{5\pi}{2}\right]$ is

- (a) 5 _____(correct)
- (b) 4
- (c) 3
- (d) 2
- (e) 1

13.
$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x =$$

- (a) $\frac{1}{e}$ ______ (correct)
- (b) e
- (c) 1
- (d) 0
- (e) ∞

14.
$$\lim_{x \to 0} \frac{4x - 2\sin 2x}{2x^3} =$$

- (a) $\frac{4}{3}$ (b) 0 (correct)

- (c) ∞ (d) $\frac{2}{3}$
- (e) $\frac{1}{2}$

15. Let b and c be positive numbers, and $f(x) = \frac{x^2 + bx + c}{x + b}$. Then

- (a) y = x is a slant asymptote. _____(correct)
- (b) y = -b is a vertical asymptote.
- (c) $y = \frac{c}{b}$ is an x-intercept.
- (d) f has one horizontal asymptote.
- (e) f has two horizontal asymptotes.

16. The curve $f(x) = \frac{x-1}{e^x}$ intersects its horizontal asymptote at x =

- (a) 1 _____(correct)
- (b) 0
- (c) e^{-1}
- (d) e^{-2}
- (e) e

17. If we have two positive numbers such that the sum of the first number squared and the second number is 108 and the product of the two numbers is a maximum, then their sum is equal to

(a) 78 _____(correct)

- (b) 66
- (c) 52
- (d) 36
- (e) 88

18. If a manufacturer wants to design an open box having a square base and a surface area of $192 \, m^2$, then the side length of the square base that will produce a box with maximum volume is

(a) 8 _____(correct)

- (b) 6
- (c) 9
- (d) 4
- (e) 10

- 19. A point on the graph of $y = 4 x^2$ that is closest to the point (0,0) is
 - (a) $\left(\sqrt{\frac{7}{2}}, \frac{1}{2}\right)$ _____(correct)
 - (b) (0,4)
 - (c) $\left(\sqrt{\frac{3}{2}}, \frac{5}{2}\right)$
 - (d) (1,3)
 - (e) $\left(\sqrt{\frac{1}{2}}, \frac{7}{2}\right)$

- 20. Let $\triangle x = 0.1$, the differential of $f(x) = \frac{1}{x}$ at x = -1 is
 - (a) $-\frac{1}{10}$ _____(correct)
 - (b) $-\frac{1}{9}$
 - (c) $\frac{1}{10}$
 - (d) $\frac{1}{9}$
 - (e) $-\frac{1}{11}$

- 21. The tangent line approximation of the function $f(x) = \frac{1}{1 + e^{-x}}$ at x = 0 is

 - (b) $y = \frac{1}{2}x + \frac{1}{4}$
 - (c) $y = \frac{1}{2}x \frac{1}{4}$
 - (d) $y = \frac{1}{4}x \frac{1}{2}$
 - (e) $y = \frac{1}{4}x$

22. If f is a function such that

$$f''(x) = 2$$
, $f'(2) = 5$; $f(2) = 10$

then f(1) =

- (a) 6 _____(correct)
- (b) 8
- (c) 15
- (d) 17
- (e) 7

$$23. \int \left(\frac{2}{x} + \sec^2 x\right) dx =$$

- (a) $2 \ln |x| + \tan x + c$ _____(correct)
- (b) $2 \ln |x| + \sec x + c$
- (c) $2 \ln |x| + \sec x \tan x + c$
- (d) $2 + 2 \sec x + c$
- (e) $\frac{-2}{x^2} + \tan x + c$

$$24. \int \frac{x+1}{\sqrt{x}} \, dx =$$

- (a) $\frac{2}{3}x^{3/2} + 2\sqrt{x} + c$ ______(correct)
- (b) $x^{\frac{3}{2}} + \sqrt{x} + c$
- (c) $2(x+1)^2 \sqrt{x} + c$
- (d) $\frac{1}{2}(x+1)^2 + 2\sqrt{x} + c$
- (e) $x^{\frac{3}{2}} + \sqrt{x} + c$

25.
$$\frac{\cosh^2 0.1 - \sinh^2 0.1}{\tanh^2 0.2 + \operatorname{sech}^2 0.2} =$$

- (a) 1 _ (correct)
- (b) 0.5
- (c) 2
- (d) -0.5
- (e) -1

26.
$$\frac{d^2}{dx^2}(2\cosh(\ln x)) =$$

- (a) $\frac{2}{x^3}$ ____ (correct)
- (b) $1 \frac{1}{x^3}$ (c) $1 + \frac{1}{x^2}$ (d) $1 + \frac{2}{x^3}$

- (e) $1 \frac{2}{x^3}$

27. Using differential, the value of $\sqrt[3]{999.4}$ approximately equals

(a) 9.998 _____(correct)

(b) 9.98

(c) 9.994

(d) 9.94

(e) 9.996

28. The number of the relative extrema of the function $f(x) = -3x^5 + 5x^3$ is

- (a) 2 _____(correct)
- (b) 3
- (c) 4
- (d) 1
- (e) 0

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	A 15	В 4	В 20	D 27
2	A	D 3	В 5	A 21	В 26
3	A	В 23	D 15	D 27	D 12
4	A	A 20	D 16	В 16	D 10
5	A	C 13	D 21	E 17	D 22
6	A	Е 11	A 19	D 12	A 15
7	A	С 6	В 20	E 18	E 18
8	A	C 18	В в	С 1	В 17
9	A	В 17	D 11	D 15	A 6
10	A	D 14	E 12	D 3	A 4
11	A	В 2	E 27	A 11	C 20
12	A	A 26	Е 13	D 13	A 2
13	A	В 12	В 2	В 14	A 11
14	A	C 19	A 28	C s	D 23
15	A	C 28	D 23	A 9	A 5
16	A	C 21	С ,	A 4	D 14
17	A	В 7	С 1	C 22	D 16
18	A	A 5	Е 3	E 2	E 24
19	A	D 16	D 24	D 28	В 13
20	A	A 4	С 6	C 26	В 9
21	A	C 22	D 7	В 7	E 28
22	A	C 24	D 10	A 6	E 25
23	A	D ,	E 18	D 5	В 21
24	A	E 27	A 26	D 10	C 7
25	A	C 25	C 22	E 25	D 3
26	A	D 10	C 17	E 24	A s
27	A	В	E 25	C 23	D 19
28	A	D s	D 14	D 19	A 1