King Fahd University of Petroleum and Minerals Department of Mathematics Math 101 Major Exam II 233 July 25, 2024 Net Time Allowed: 90 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

233, Math 101, Major Exam II Page 1 of 7 Question 10/ Review Exercises Chapter 4 Page 278 Section 4.2

MASTER

1. The value of c that satisfies Rolle's Theorem when applied to $f(x) = (x-2)(x+3)^2$ on [-3,2] is equal to

(a)
$$\frac{1}{3}$$

(b) $\frac{1}{2}$
(c) -3
(d) 2
(e) $-\frac{1}{3}$

Question 17 / Review Exercises Chapter 4 Page 278 Section 4.2 2. The value of c that satisfies the Mean Value Theorem when applied to $f(x) = x - \cos x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is equal to

(a) 0
(b)
$$\frac{\pi}{6}$$

(c) $\frac{\pi}{3}$
(d) $-\frac{\pi}{4}$
(e) $-\frac{\pi}{3}$

Question 19 / Section 4.1 Page 211

- 3. If x = c is a critical number of the function $f(x) = \sin^2 x + \cos x$ on $(0, 2\pi)$, then the sum of all possible values of c is
 - (a) 3π
 - (b) 2π
 - (c) π
 - (d) $\frac{5\pi}{3}$

 - (e) $\frac{2\pi}{3}$

Question 31 / Section 4.1 Page 211

- 4. If M and m are the absolute maximum and absolute minimum respectively of the function $f(x) = 3x^{2/3} - 2x$ on [-1, 1], then M + m =
 - (a) 5
 - (b) 2
 - (c) 4

 - (d) 7
 - (e) 3

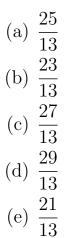
Question 13 / Section 3.8 Page 198

5. Newton's Method is used to approximate a zero of the function $f(x) = x - e^{-x}$. If we choose $x_1 = 0$, then $x_2 =$

(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) 1 (d) -1(e) 2

Question 119 / Review Exercises Chapter 3 Page 202 Section 3.7

- 6. A point moves along the curve $y = \sqrt{x}$ in such away that the y-component of the position of the point is increasing at a rate of 2 units per second. At what rate is the x-component changing when x = 4?
 - (a) increasing at a rate of 8 units per second
 - (b) decreasing at a rate of 8 units per second
 - (c) increasing at a rate of $\frac{1}{2}$ unit per second
 - (d) decreasing at a rate of $\frac{1}{2}$ unit per second


 - (e) increasing at a rate of 1 unit per second

MASTER

Question 26 / Section 3.7 Page 191

- 7. An airplane is flying at an altitude of 5 miles and passes directly over a radar antenna. When the distance between the plane and the radar is 10 miles, the radar detects that the distance between the radar and the plane is changing at a rate of 240 miles per hour. What is the speed of the plane?
 - (a) $160\sqrt{3}$
 - (b) $320\sqrt{3}$
 - (c) 160
 - (d) 320
 - (e) 480

Example 4 / Section 3.6 Page 180 8. If $y = \arctan(3x) + \arcsin(\sqrt{x})$, then $\frac{dy}{dx}|_{x=\frac{1}{2}} =$

MASTER

Question 111 / Review Exercises Chapter (3 page 202 Section 3.6
9. If
$$f(x) = \tan x, -\frac{\pi}{4} \le x \le \frac{\pi}{4}$$
, then $(f^{-1})' \begin{pmatrix} 3\sqrt{3} \\ \sqrt{3} \\ 3 \end{pmatrix} =$

(a) $\frac{3}{4}$ (b) $\frac{1}{4}$ (c) 1 (d) $\frac{1}{2}$ (e) $\frac{5}{4}$

Question 51 / Section 3.5 Page 176 10. The slope of the graph of the relation $x + y - 1 = \ln(x^2 + y^2)$ at the point (1,0) is

- (a) 1
- (b) 2
- (c) -1
- (d) -2
- (e) 0

Question 63 / Section 3.5 Page 176

11. If y = Ax + B is the equation of the normal line to the circle $x^2 + y^2 = 25$ at the point (4,3), then A + B =

(a)
$$\frac{3}{4}$$

(b) $\frac{-3}{4}$
(c) $\frac{4}{3}$
(d) $\frac{-4}{3}$
(e) $\frac{1}{5}$

Question 80 / Section 3.5 Page 176 12. If $y = (\ln x)^{\ln x}$, x > 1, then y'(e) =

(a)
$$\frac{1}{e}$$

(b) e
(c) e^2
(d) 1
(e) $\frac{1}{e^2}$

Page 7 of 7

Question 129 / Section 3.4 Page 166 13. If $h(x) = \frac{1}{9}(3x+1)^3$, then h''(1) =

- (a) 24
- (b) 22
- (c) 26
- (d) 20
- (e) 28

Question 30 / Section
$$\frac{3}{2}^{4}$$
 Page 164
14. If $g(x) = \left(\frac{3x^2 - 2}{2x + 3}\right)^{\frac{3}{2}}$, then $g'(0) =$

- (a) 3
- (b) 4
- (c) 2
- (-) (1) 0
- (d) 0
- (e) 1