1. If $f(x) = e^x \sin x$, then f'''(0) =

- (a) 2 _____(correct)
- (b) $\frac{1}{2}$
- (c) π
- (d) 1
- (e) $\frac{1}{2}e^{\pi}$

- 2. The slope of the tangent line to the curve $y = \frac{1 + \csc x}{1 \csc x}$ at $(\frac{\pi}{6}, -3)$ is equal to:
 - (a) $-4\sqrt{3}$ _____(correct)
 - (b) $\sqrt{3}$
 - (c) -3
 - (d) $2\sqrt{3}$
 - (e) $\frac{2}{3}\sqrt{3}$

3. If
$$y = \ln\left(\frac{1+e^x}{1-e^x}\right)$$
, then $y' =$

(a)
$$\frac{2e^x}{1-e^{2x}}$$
 _____(correct)

(b)
$$\frac{e^x}{(1-e^x)^2}$$

(c)
$$\frac{1}{2}e^x \left(\frac{1+e^x}{1-e^x}\right)$$

(d)
$$\left(\frac{1+e^x}{1-e^x}\right)^2$$

(e)
$$\frac{1+e^x}{1-e^{2x}}$$

4. If
$$f(x) = (2 + (x^2 + 1)^4)^3$$
, then $f'(1) =$

- (a) 3^52^8 _____(correct)
- (b) 3^22^6
- (c) 32^9
- (d) 3^42^6
- (e) 3^32^7

5. The equation of the tangent line to the curve tan(x + y) = x at (0,0) is

(a) y = 0 _____(correct)

- (b) $y = x + \frac{\pi}{4}$
- (c) $y = x \frac{\pi}{4}$
- (d) y = 1
- (e) y = -1

- 6. If $y = x^{\ln x}$, x > 0, then y'(e) =
 - (a) 2 _____(correct)
 - (b) e
 - (c) 2e
 - (d) e^2
 - (e) $\frac{1}{2}$

7. If $y = \sin(\cos^{-1} x)$, then y' =

- (a) $\frac{-x}{\sqrt{1-x^2}}$ (correct)
- (b) $\frac{-1}{\sqrt{1-x^2}}$
- $(c) \frac{1}{\sqrt{1-x^2}}$
- $(d) \frac{2}{\sqrt{1-x^2}}$
- (e) $\frac{x}{\sqrt{1-x^2}}$

8. All edges of a cube are expanding at a rate of 6 centimeters per second. How fast is the surface area changing when each edge is 3cm.

- (a) $216 \, cm^2/sec$ _____(correct)
- (b) $168 \, cm^2 / sec$
- (c) $144 \, cm^2 / sec$
- (d) $72 \, cm^2 / sec$
- (e) $256 \, cm^2/sec$

9. Starting with $x_1 = 2$, the second Newton's approximation x_2 to the root of $x^3 - 2x - 5 = 0$ is

(a) 2.10 _____ __(correct)

- (b) 2.01
- (c) 2.00
- (d) 1.99
- (e) 1.89

- 10. The sum of all critical numbers of $f(x) = \sin^2 x + \cos x$ over $(0, 2\pi)$ is
 - (a) 3π _____ (correct)
 - (b) 5π
 - (c) $\frac{5}{2}\pi$ (d) $\frac{7}{2}\pi$ (e) $\frac{3}{2}\pi$

11. The critical number of $f(x) = x^{-2} \ln x$ is

- ____(correct)
- (b) e^{-2}
- (c) $\frac{1}{\sqrt{e}}$
- (d) $\frac{1}{2}e$ (e) $e\sqrt{e}$

12. If the range of $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ over the domain [-2, 3] is [m, M], then m + M =

- (a) 2 _____ ____(correct)
- (b) 61
- (c) -30
- (d) 29
- (e) 24

- 13. If c is the number that satisfies the conclusion of the Mean Value Theorem of $f(x) = \frac{x}{x+2}$ over [1,4], then
 - (a) 2 < c < 3 _____(correct)
 - (b) 1 < c < 2
 - (c) 3 < c < 4
 - (d) $\frac{5}{2} < c < \frac{7}{2}$
 - (e) $\frac{1}{2} < c < \frac{3}{2}$

- 14. One statement is False about $f(x) = x^3 + 3x + 1$
 - (a) There is an interval [a, b], a < b, where Roll's Theorem is applicable ___(correct)
 - (b) f(x) has at most one x-intercept
 - (c) f(x) is differentiable over $(-\infty, \infty)$
 - (d) f(x) has no point where the tangent line is horizontal
 - (e) f'(-1) = f'(1)