1. If
$$f(x) = \begin{cases} x^2 & x \le 2 \\ 8 - 2x & 2 < x < 4 \\ 4 & x \ge 4 \end{cases}$$
, then

- (a) f'(2) does not exist _____(correct)
- (b) f is continuous on \mathbb{R}
- (c) f is increasing on (2,4)
- (d) $\lim_{x \to \infty} f(x) = \infty$
- (e) $\lim_{x \to -\infty} f(x)$ exists

2. The function
$$f(x) = \frac{\ln(x^2 + 1)}{x + 1}$$

- (a) has one vertical asymptote at x = -1 _____(correct)
- (b) has one vertical asymptote at x = 1
- (c) has two vertical asymptote at x = 0 and x = -1
- (d) has no vertical asymptote
- (e) has two vertical asymptotes at x = 1 and x = -1

- 3. $\lim_{x \to -\infty} 3x + \sqrt{9x^2 x} =$
 - (a) $\frac{1}{6}$ _____(correct)
 - (b) ∞
 - (c) $-\infty$
 - (d) $\frac{1}{3}$
 - (e) $\frac{1}{2}$

- 4. If $f(x) = xe^{2x}$, then $f^{(4)}(1) =$
 - (a) $48e^2$ _____(correct)
 - (b) $36e^2$
 - (c) $20e^2$
 - (d) $28e^2$
 - (e) $24 e^2$

5. An equation of the tangent line to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$ at the point (8,1) is

- (a) 2y + x 10 = 0 _____(correct)
- (b) y x + 7 = 0
- (c) y + 2x 17 = 0
- (d) 2y x + 6 = 0
- (e) y 2x + 15 = 0

6. The sum of all critical numbers of the function $f(x) = \frac{4x}{x^2 + 1}$ is equal to

- (a) 0 _____(correct)
- (b) 1
- (c) -1
- (d) 2
- (e) -3

- 7. Which of the following is/are True?
 - (I) There is no function with an infinite number of critical numbers
 - (II) Every polynomial has at least one critical number
 - (III) A polynomial of degree $n \geq 1$ has at most (n-1) critical numbers
 - (a) III _____(correct)
 - (b) II & III
 - (c) II
 - (d) I&III
 - (e) I

- 8. The function $f(x) = 7x^3 21x + 3$ is
 - (a) decreasing on (-1,1) _____(correct)
 - (b) increasing on (-1,1)
 - (c) decreasing on $(-\infty, -1)$
 - (d) increasing on $(0, \infty)$
 - (e) increasing on (0,2)

9. Consider the function $f(x) = \sqrt[3]{x}$. Which statement is **TRUE** about f(x)?

- (a) f(x) has one inflection point at (0,0) _____(correct)
- (b) f(x) is decreasing for all x > 0
- (c) f(x) has no inflection point
- (d) f(x) has two critical points
- (e) f(x) concave down on $(-\infty, 0)$

10. The graph of the function
$$f(x) = \frac{\cos x}{1 + \sin x}$$
 on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- (a) is decreasing and concave upward _____(correct)
- (b) is decreasing and concave downward
- (c) is increasing and concave upward
- (d) is increasing and concave downward
- (e) intersects the x-axis at x = 0

- 11. Consider the function $f(x) = \frac{x}{x^2 + 1}$. Which statement is TRUE about the graph of f?
 - (a) f(x) has a relative minimum at $\left(-1, -\frac{1}{2}\right)$ and a relative maximum at $\left(1, \frac{1}{2}\right)$
 - (b) f(x) is increasing on $(-\infty, -1)$ and $(1, \infty)$
 - (c) f(x) is concave upward on $(0,\sqrt{3})$ and concave downward on $(-\sqrt{3},0)$
 - (d) f(x) has exactly one point of inflection at (0,0)
 - (e) The line x = 0 is a vertical asymptote of f(x)

- 12. Let x and y be two positive numbers such that the sum of the first number cubed and the second number is 500, and the product of x and y is maximum. Then x + y =
 - (a) 380 _____(correct)
 - (b) 375
 - (c) 385
 - (d) 240
 - (e) 120

13. If $y = e^{-\frac{x}{2}} \cos 4x$, then dy =

(a)
$$e^{-\frac{x}{2}} \left(-4\sin 4x - \frac{1}{2}\cos 4x \right) dx$$
 ______(correct)

(b)
$$e^{-\frac{x}{2}} \left(4\sin 4x - \frac{1}{2}\cos 4x \right) dx$$

(c)
$$e^{-\frac{x}{2}} \left(-4\cos 4x - \frac{1}{2}\sin 4x \right) dx$$

(d)
$$e^{-\frac{x}{2}} \left(4\cos 4x + \frac{1}{2}\sin 4x \right) dx$$

(e)
$$e^{-\frac{x}{2}} \left(4\cos 4x - \frac{1}{2}\sin 4x \right) dx$$

14.
$$\int (\sec y)(\tan y - \sec y) \, dy =$$

(a)
$$\sec y - \tan y + c$$
 _____(correct)

- (b) $\sec^2 y \tan y + c$
- (c) $\tan^2 y + \csc y + c$
- (d) $\cos y + \tan y + c$
- (e) $\sec^2 y + \tan y + c$

15. If f is a function such that f''(x) = -2, f(-1) = 3 and f(0) = 1, then f(1) = 1

- (a) -3 _____(correct)
- (b) -2
- (c) -1
- (d) 0
- (e) 1

$$16. \int \frac{x+6}{\sqrt{x}} \, dx =$$

(a)
$$\frac{2}{3}x^{\frac{3}{2}} + 12x^{\frac{1}{2}} + c$$
 (correct)

- (b) $\frac{3}{2}x^{\frac{3}{2}} + 12x^{\frac{1}{2}} + c$
- (c) $\frac{3}{2}x^{\frac{3}{2}} + 6x^{\frac{1}{2}} + c$
- (d) $\frac{2}{3}x^{\frac{2}{3}} + 12x^{\frac{1}{2}} + c$
- (e) $\frac{3}{2}x^{\frac{2}{3}} + 12x^{\frac{1}{2}} + c$

17. $\lim_{x \to 0^+} (\sin x)^x =$

- (a) 1 _(correct)
- (b) 0
- (c) $\frac{\pi}{4}$
- (d) $\frac{e}{4}$
- (e) DNE

18.
$$\lim_{x \to 0^+} (e^x + x)^{\frac{2}{x}} =$$

- (a) e^4 ____(correct)
- (b) e^2
- (c) 1
- (d) e
- (e) ∞

- 19. The sum of all the relative maxima and minima of the function $f(x) = \sin x \sinh x \cos x \cosh x$ on (-4,4) is
 - (a) $2\cosh \pi 1$ _____(correct)
 - (b) $\cosh \pi 1$
 - (c) $1 \cosh \pi$
 - (d) $1 2\cosh \pi$
 - (e) -1

- $20. \lim_{x \to 0} \frac{\sinh 2x}{x} =$
 - (a) 2 _____(correct)
 - (b) 1
 - (c) 0
 - (d) -1
 - (e) -2

Q	MASTER	1	2	3	4	5	6	7	8
1	A	C 5	В 12	C 11	D 11	C 12	A 17	D 6	Е 11
2	A	A 2	C 1	В 15	D 14	D 10	C 5	A 17	E 13
3	A	A ₈	E 16	В 18	А 3	Сз	E 16	D 3	D 9
4	A	D 14	D 5	D 2	D 12	D 13	E 9	C 15	A 16
5	A	D 15	D 3	E 1	E 4	E s	C 19	C 16	D 17
6	A	A 16	В 2	C 6	E 5	E 4	A 10	В 10	D 18
7	A	D 6	C 13	C 13	E 8	C 1	E 1	C 18	C 2
8	A	D 13	C 7	A 7	E 15	C 18	A 7	A 11	E 12
9	A	C 19	В 6	E 17	A 18	C 5	C 11	В 12	A 5
10	A	B 4	C 10	A 5	С 1	В 17	A 2	E 7	Вз
11	A	D 1	A 19	E 10	A 13	С 9	E 18	C 8	A 15
12	A	A 18	C 9	В 16	В 16	E 2	E 14	В 14	C s
13	A	A 7	D 17	A 19	E 10	C 15	D 12	A 13	E 1
14	A	В 10	C 4	D 12	В 6	C 16	E s	В 19	E 10
15	A	A 11	A 15	E 4	D 17	E 11	D 15	A 4	D 7
16	A	E 17	C 14	Сз	C ,	D 14	А 3	E ,	В 14
17	A	A 9	В 18	В 8	E 19	C 19	С 6	E 5	C 4
18	A	А 3	C 8	D 14	E 2	C 7	A 13	В	D 6
19	A	В 12	C 11	D 9	D 7	D 6	A 4	E 2	E 19
20	A	E 20	E 20	В 20	C 20	A 20	A 20	В 20	В 20