King Fahd University of Petroleum and Minerals Department of Mathematics

> Math 102 Final Exam 213 August 09, 2022

EXAM COVER

Number of versions: 4 Number of questions: 28

King Fahd University of Petroleum and Minerals Department of Mathematics Math 102 Final Exam 213 August 09, 2022 Net Time Allowed: 180 Minutes

MASTER VERSION

1. The average value of $f(x) = \sec^2\left(\frac{x}{2}\right)$ over $\left[0, \frac{\pi}{2}\right]$ is equal to

$$2. \int \tan^{-1}(4x) =$$

(a)
$$x \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$$
 (correct)
(b) $2 \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$
(c) $3x \tan^{-1}(4x) + \frac{7}{8} \ln (1 + 16x^2) + c$
(d) $3 \tan^{-1}(4x) + \frac{1}{8} \ln (1 + 16x^2) + c$
(e) $2x \tan^{-1}(4x) - \frac{7}{8} \ln (1 + 16x^2) + c$

3. If
$$y = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$
, then $\frac{dy}{dx}$ at $x = 0$ is equal to

4.
$$\int \frac{x^3 + 4}{x^2 + 4} \, dx =$$

(a)
$$\frac{1}{2}x^2 - 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$$
 (correct)
(b) $x^2 - 2\ln(x^2 + 4) - \tan^{-1}\left(\frac{x}{2}\right) + c$
(c) $4x^2 - 2\ln(x^2 + 4) - 2\tan^{-1}\left(\frac{x}{2}\right) + c$
(d) $3x^2 + 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$
(e) $\frac{1}{2}x^2 - 2\ln(x^2 + 4) - 4\tan^{-1}\left(\frac{x}{2}\right) + c$

5.
$$\int x\sqrt{1-x^4}\,dx =$$

(a)
$$\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$$
 (correct)
(b) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$
(c) $\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$
(d) $\frac{1}{4}\sin^{-1}(x^2) - \frac{1}{8}x^2\sqrt{1-x^4} + c$
(e) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$

$$6. \int \frac{\cos^5 x}{\sqrt{\sin x}} \, dx =$$

(a)
$$2\sqrt{\sin x} - \frac{4}{5}\sin^{5/2}x + \frac{2}{9}\sin^{9/2}x + c$$
 (correct)
(b) $\sqrt{\sin x} + \frac{4}{5}\sin^{5/2}x + \sin^{9/2}x + c$
(c) $4\sqrt{\sin x} - \frac{1}{5}\sin^{4/5}x - \frac{2}{9}\sin^{9/2}x + c$
(d) $2\sqrt{\sin x} + \sin^{5/2}x + \frac{1}{9}\sin^{9/2}x + c$
(e) $\sqrt{\sin x} - \frac{1}{5}\sin^{4/5}x + \frac{2}{9}\sin^{9/2}x + c$

7. The improper integral
$$\int_{-2}^{3} \frac{1}{x^4} dx$$
 is

(a) divergent $_$ (correct) (b) convergent to $\frac{1}{2}$ (c) convergent to $\frac{1}{4}$ (d) convergent to $-\frac{1}{2}$ (e) convergent to $-\frac{1}{4}$

8. The length of the curve $f(x) = 3 + \frac{1}{2} \cosh 2x$ over [0, 1] is equal to

(a)
$$\frac{1}{2} \sinh 2$$
 (correct)
(b) $\sinh 2$
(c) $\frac{1}{3} \sinh 3$
(d) $\sinh 3$
(e) $\frac{1}{2} \sinh 4$

- 9. The area of the surface obtained by rotating the curve $y = \sqrt{1 + e^x}$, $0 \le x \le 1$ about x-axis is equal to
 - (a) $\pi(e+1)$ ______(correct) (b) $2\pi(e-1)$ (c) $3\pi(e+1)$ (d) $\pi(e-1)$
 - (e) $2\pi(e+4)$

10. Let
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$
, then $\lim_{n \to \infty} a_n$

(a) does not exist _____

_(correct)

- (b) converges to 1
- (c) converges to -1
- (d) converges to 0
- (e) converges to 2

(correct)

11. The series

$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

is

- (a) convergent and its sum is $\frac{3}{2}$ (b) convergent and its sum is $\frac{5}{2}$ (c) convergent and its sum is $\frac{7}{2}$ (d) convergent and its sum is $\frac{9}{2}$
- (e) divergent

12. The series
$$\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$$
 is

(a) convergent with sum $= \frac{3e}{3-e}$ (correct) (b) convergent with sum $= \frac{e}{3-e}$ (c) convergent with sum $= \frac{e}{3-2e}$ (d) convergent with sum $= \frac{3e}{3+e}$ (e) divergent

MASTER

(correct)

13. The series
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$
 is

- (a) convergent by integral test _____
- (b) divergent by integral test
- (c) convergent to $\frac{1}{3e}$
- (d) divergent by divergence test
- (e) a series where the integral test is not applicable

14. The series

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$$

- (a) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ (correct) (b) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (c) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (d) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$
- (e) diverges by limit comparison test

- 15. Using the Integral Test Remainder Estimate for the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, we find that the smallest number of terms need to be added such that $|\text{error}| < 10^{-2}$ is
 - (a) 101 _____(correct) (b) 99
 - (c) 103
 - (d) 105
 - (e) 97

16. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 is

(a) a convergent alternating series _____

_(correct)

- (b) a convergent geometric series
- (c) a divergent p-series
- (d) a convergent p-series
- (e) a divergent geometric series

MASTER

(correct)

17. The series
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

- (a) diverges by the ratio test _____
- (b) converges by the ratio test
- (c) converges by the root test
- (d) converges by integral test
- (e) converges conditionally

18. The series

$$\sum_{n=1}^{\infty} (\tan^{-1} n)^n$$

- (a) diverges by the root test _____(correct)
- (b) converges by the root test
- (c) converges by the ratio test
- (d) a series where the root test is inconclusive
- (e) a series where the ratio test is inconclusive

19. The interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

is

(a) [1,3] ______(correct) (b) (1,3](c) [1,3)(d) (1,3)(e) $(-\infty,\infty)$

20. The power series representation for the function $f(x) = \frac{x^4}{(1+x)^2}$ is

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n x^{n+3}, |x| < 1$$
 (correct)
(b)
$$\sum_{n=1}^{\infty} (-1)^n (n+1) x^{n+2}, |x| < 1$$

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} (n+2) x^n, |x| < 1$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n n x^{n+4}, |x| < 1$$

(e)
$$\sum_{n=2}^{\infty} (-1)^n n x^{n+2}, |x| < 1$$

- 21. The area of the region in the first quadrant enclosed by the curves y = x, $y = \frac{1}{x}$ and $y = \frac{1}{4}x$ is equal to

 - (e) ln 6

22. Using the method of cylindrical shell, the volume of the solid generated by revolving about the line x = 2 the region bounded by $y = x - x^2$ and y = 0 is equal to

23.
$$\int_0^1 \frac{dx}{1+x^6} =$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+1}$$
 (correct)
(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{6n+2}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+2}$
(d) $\sum_{n=1}^{\infty} \frac{1}{6n+2}$
(e) $\sum_{n=0}^{\infty} \frac{1}{6n+2}$

24. Estimating the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 using three rectangles and right points is equal to

(a)	8	(correct)
(b)	10	
(c)	12	
(d)	14	
(e)	16	

26. The Taylor series for $f(x) = e^{2x}$ centered at a = 3 is given by

(a)
$$\sum_{n=0}^{\infty} \frac{2^n e^6}{n!} (x-3)^n, R = \infty$$
 ______(correct)
(b) $\sum_{n=0}^{\infty} \frac{2^n}{n!} (x-3)^n, R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{e^6}{n!} (x-3)^n, R = \infty$
(d) $\sum_{n=0}^{\infty} 2^n e^6 (x-3)^n, R = \infty$
(e) $\sum_{n=0}^{\infty} 2^n (x-3)^n, R = \infty$

27. The first three nonzero terms of the Maclaurin series for the function $f(x)=(1-x)^{1/4}$ are

(a)
$$1 - \frac{1}{4}x - \frac{3}{32}x^2$$
 (correct)
(b) $1 + \frac{1}{4}x - \frac{3}{32}x^2$
(c) $1 - \frac{1}{4}x + \frac{3}{32}x^2$
(d) $1 - \frac{1}{4}x - \frac{3}{16}x^2$
(e) $1 + \frac{1}{4}x - \frac{3}{16}x^2$

28. The Maclaurin series for
$$f(x) = x \cos\left(\frac{x^2}{2}\right)$$
 is

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}(2n)!} x^{4n+1}, R = \infty$$
 (correct)
(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n+1}, R = \infty$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}} x^{4n+1}, R = \infty$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+1}, R = \infty$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+2}, R = \infty$$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE01

CODE01

Math 102 Final Exam 213 August 09, 2022 Net Time Allowed: 180 Minutes

Name							
ID		Sec					

Check that this exam has <u>28</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The improper integral
$$\int_{-2}^{3} \frac{1}{x^4} dx$$
 is

(a) divergent (b) convergent to $\frac{1}{4}$ (c) convergent to $-\frac{1}{2}$ (d) convergent to $\frac{1}{2}$ (e) convergent to $-\frac{1}{4}$

2. The average value of $f(x) = \sec^2\left(\frac{x}{2}\right)$ over $\left[0, \frac{\pi}{2}\right]$ is equal to

(a)
$$\frac{10}{\pi}$$

(b) $\frac{12}{\pi}$
(c) $\frac{6}{\pi}$
(d) $\frac{4}{\pi}$
(e) $\frac{8}{\pi}$

CODE01

3.
$$\int \frac{\cos^5 x}{\sqrt{\sin x}} \, dx =$$

(a)
$$4\sqrt{\sin x} - \frac{1}{5}\sin^{4/5}x - \frac{2}{9}\sin^{9/2}x + c$$

(b) $2\sqrt{\sin x} - \frac{4}{5}\sin^{5/2}x + \frac{2}{9}\sin^{9/2}x + c$
(c) $\sqrt{\sin x} - \frac{1}{5}\sin^{4/5}x + \frac{2}{9}\sin^{9/2}x + c$
(d) $\sqrt{\sin x} + \frac{4}{5}\sin^{5/2}x + \sin^{9/2}x + c$
(e) $2\sqrt{\sin x} + \sin^{5/2}x + \frac{1}{9}\sin^{9/2}x + c$

4.
$$\int \frac{x^3 + 4}{x^2 + 4} \, dx =$$

(a)
$$4x^2 - 2\ln(x^2 + 4) - 2\tan^{-1}\left(\frac{x}{2}\right) + c$$

(b) $\frac{1}{2}x^2 - 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$
(c) $\frac{1}{2}x^2 - 2\ln(x^2 + 4) - 4\tan^{-1}\left(\frac{x}{2}\right) + c$
(d) $x^2 - 2\ln(x^2 + 4) - \tan^{-1}\left(\frac{x}{2}\right) + c$
(e) $3x^2 + 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$

5.
$$\int x\sqrt{1-x^4}\,dx =$$

(a)
$$\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$$

(b) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$
(c) $\frac{1}{4}\sin^{-1}(x^2) - \frac{1}{8}x^2\sqrt{1-x^4} + c$
(d) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$
(e) $\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$

6. If
$$y = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} \, du$$
, then $\frac{dy}{dx}$ at $x = 0$ is equal to

$$7. \int \tan^{-1}(4x) =$$

(a)
$$2 \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$$

(b) $3x \tan^{-1}(4x) + \frac{7}{8} \ln (1 + 16x^2) + c$
(c) $3 \tan^{-1}(4x) + \frac{1}{8} \ln (1 + 16x^2) + c$
(d) $2x \tan^{-1}(4x) - \frac{7}{8} \ln (1 + 16x^2) + c$
(e) $x \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$

8. The series

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$$

- (a) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (b) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ (c) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (d) diverges by limit comparison test
- (e) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$

9. The series

$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

is

- (a) convergent and its sum is $\frac{5}{2}$ (b) convergent and its sum is $\frac{9}{2}$ (c) convergent and its sum is $\frac{3}{2}$
- (d) convergent and its sum is $\frac{7}{2}$
- (e) divergent

10. Let
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$
, then $\lim_{n \to \infty} a_n$

- (a) converges to 1
- (b) converges to 0
- (c) converges to -1
- (d) converges to 2
- (e) does not exist

11. The series
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$
 is

- (a) convergent to $\frac{1}{3e}$
- (b) convergent by integral test
- (c) a series where the integral test is not applicable
- (d) divergent by integral test
- (e) divergent by divergence test

- 12. The area of the surface obtained by rotating the curve $y = \sqrt{1 + e^x}, 0 \le x \le 1$ about x-axis is equal to
 - (a) $\pi(e+1)$
 - (b) $3\pi(e+1)$
 - (c) $2\pi(e-1)$
 - (d) $\pi(e-1)$
 - (e) $2\pi(e+4)$

13. The series $\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$ is

(a) convergent with sum =
$$\frac{3e}{3+e}$$

(b) divergent
(c) convergent with sum = $\frac{e}{3-e}$
(d) convergent with sum = $\frac{3e}{3-e}$
(e) convergent with sum = $\frac{e}{3-2e}$

14. The length of the curve $f(x) = 3 + \frac{1}{2} \cosh 2x$ over [0, 1] is equal to

(a) $\sinh 3$ (b) $\sinh 2$ (c) $\frac{1}{3} \sinh 3$ (d) $\frac{1}{2} \sinh 4$ (e) $\frac{1}{2} \sinh 2$

CODE01

15. The power series representation for the function $f(x) = \frac{x^4}{(1+x)^2}$ is

(a)
$$\sum_{n=2}^{\infty} (-1)^n n x^{n+2}, |x| < 1$$

(b) $\sum_{n=1}^{\infty} (-1)^{n+1} n x^{n+3}, |x| < 1$
(c) $\sum_{n=1}^{\infty} (-1)^n n x^{n+4}, |x| < 1$
(d) $\sum_{n=1}^{\infty} (-1)^n (n+1) x^{n+2}, |x| < 1$
(e) $\sum_{n=1}^{\infty} (-1)^{n+1} (n+2) x^n, |x| < 1$

- 16. Using the Integral Test Remainder Estimate for the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, we find that the smallest number of terms need to be added such that $|\text{error}| < 10^{-2}$ is
 - (a) 97
 - (b) 99
 - (c) 103
 - (d) 101
 - (e) 105

17. The series

$$\sum_{n=1}^{\infty} (\tan^{-1} n)^n$$

- (a) converges by the ratio test
- (b) diverges by the root test
- (c) a series where the root test is inconclusive
- (d) converges by the root test
- (e) a series where the ratio test is inconclusive

18. The series
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

- (a) converges conditionally
- (b) converges by integral test
- (c) converges by the root test
- (d) converges by the ratio test
- (e) diverges by the ratio test

CODE01

19. The area of the region in the first quadrant enclosed by the curves y = x, $y = \frac{1}{x}$ and $y = \frac{1}{4}x$ is equal to

- (a) $\ln 5$
- (b) $\ln 2$
- (c) ln 6
- (d) ln 4
- (e) ln 3

20. The interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

is

- (a) $(-\infty, \infty)$ (b) (1, 3)(c) [1, 3](d) [1, 3)
- (e) (1,3]

21. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 is

- (a) a convergent geometric series
- (b) a divergent p-series
- (c) a convergent p-series
- (d) a convergent alternating series
- (e) a divergent geometric series

22. Using the method of cylindrical shell, the volume of the solid generated by revolving about the line x = 2 the region bounded by $y = x - x^2$ and y = 0 is equal to

23.
$$\int_0^1 \frac{dx}{1+x^6} =$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+2}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{6n+2}$
(c) $\sum_{n=1}^{\infty} \frac{1}{6n+2}$
(d) $\sum_{n=0}^{\infty} \frac{1}{6n+2}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+1}$

24. Estimating the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 using three rectangles and right points is equal to

- (a) 12
- (b) 8
- (c) 10
- (d) 14
- (e) 16

25. The Maclaurin series for $f(x) = x \cos\left(\frac{x^2}{2}\right)$ is

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}(2n)!} x^{4n+1}, R = \infty$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}} x^{4n+1}, R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+2}, R = \infty$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n+1}, R = \infty$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+1}, R = \infty$

26. The first three nonzero terms of the Maclaurin series for the function $f(x) = (1-x)^{1/4}$ are

(a)
$$1 - \frac{1}{4}x - \frac{3}{32}x^2$$

(b) $1 + \frac{1}{4}x - \frac{3}{32}x^2$
(c) $1 + \frac{1}{4}x - \frac{3}{16}x^2$
(d) $1 - \frac{1}{4}x - \frac{3}{16}x^2$
(e) $1 - \frac{1}{4}x + \frac{3}{32}x^2$

27. $-\ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \ldots =$

(a)
$$-2$$

(b) $\frac{1}{2}$
(c) 2
(d) $\frac{1}{4}$
(e) $-\frac{1}{2}$

28. The Taylor series for $f(x) = e^{2x}$ centered at a = 3 is given by

(a)
$$\sum_{n=0}^{\infty} \frac{2^n e^6}{n!} (x-3)^n$$
, $R = \infty$
(b) $\sum_{n=0}^{\infty} 2^n e^6 (x-3)^n$, $R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{e^6}{n!} (x-3)^n$, $R = \infty$
(d) $\sum_{n=0}^{\infty} \frac{2^n}{n!} (x-3)^n$, $R = \infty$
(e) $\sum_{n=0}^{\infty} 2^n (x-3)^n$, $R = \infty$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE02

CODE02

Math 102 Final Exam 213 August 09, 2022 Net Time Allowed: 180 Minutes

Name							
ID		Sec					

Check that this exam has <u>28</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

$$1. \ \int \tan^{-1}(4x) =$$

(a)
$$2x \tan^{-1}(4x) - \frac{7}{8} \ln(1 + 16x^2) + c$$

(b) $x \tan^{-1}(4x) - \frac{1}{8} \ln(1 + 16x^2) + c$
(c) $2 \tan^{-1}(4x) - \frac{1}{8} \ln(1 + 16x^2) + c$
(d) $3x \tan^{-1}(4x) + \frac{7}{8} \ln(1 + 16x^2) + c$
(e) $3 \tan^{-1}(4x) + \frac{1}{8} \ln(1 + 16x^2) + c$

$$2. \int \frac{\cos^5 x}{\sqrt{\sin x}} \, dx =$$

(a)
$$\sqrt{\sin x} - \frac{1}{5} \sin^{4/5} x + \frac{2}{9} \sin^{9/2} x + c$$

(b) $2\sqrt{\sin x} + \sin^{5/2} x + \frac{1}{9} \sin^{9/2} x + c$
(c) $2\sqrt{\sin x} - \frac{4}{5} \sin^{5/2} x + \frac{2}{9} \sin^{9/2} x + c$
(d) $4\sqrt{\sin x} - \frac{1}{5} \sin^{4/5} x - \frac{2}{9} \sin^{9/2} x + c$
(e) $\sqrt{\sin x} + \frac{4}{5} \sin^{5/2} x + \sin^{9/2} x + c$

3.
$$\int \frac{x^3 + 4}{x^2 + 4} \, dx =$$

(a)
$$\frac{1}{2}x^2 - 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$$

(b) $x^2 - 2\ln(x^2 + 4) - \tan^{-1}\left(\frac{x}{2}\right) + c$
(c) $3x^2 + 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$
(d) $\frac{1}{2}x^2 - 2\ln(x^2 + 4) - 4\tan^{-1}\left(\frac{x}{2}\right) + c$
(e) $4x^2 - 2\ln(x^2 + 4) - 2\tan^{-1}\left(\frac{x}{2}\right) + c$

4. The average value of $f(x) = \sec^2\left(\frac{x}{2}\right)$ over $\left[0, \frac{\pi}{2}\right]$ is equal to

(a)
$$\frac{8}{\pi}$$

(b) $\frac{6}{\pi}$
(c) $\frac{12}{\pi}$
(d) $\frac{4}{\pi}$
(e) $\frac{10}{\pi}$

5. The improper integral
$$\int_{-2}^{3} \frac{1}{x^4} dx$$
 is

(a) convergent to
$$\frac{1}{2}$$

(b) divergent
(c) convergent to $\frac{1}{4}$
(d) convergent to $-\frac{1}{2}$
(e) convergent to $-\frac{1}{4}$

6. If
$$y = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} \, du$$
, then $\frac{dy}{dx}$ at $x = 0$ is equal to

(a)
$$-2$$

(b) -3
(c) 2
(d) -1
(e) 4

$$7. \ \int x\sqrt{1-x^4} \, dx =$$

(a)
$$\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$$

(b) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$
(c) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$
(d) $\frac{1}{4}\sin^{-1}(x^2) - \frac{1}{8}x^2\sqrt{1-x^4} + c$
(e) $\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$

8. The area of the surface obtained by rotating the curve $y = \sqrt{1 + e^x}$, $0 \le x \le 1$ about x-axis is equal to

- (a) $2\pi(e+4)$
- (b) $2\pi(e-1)$
- (c) $\pi(e-1)$
- (d) $\pi(e+1)$
- (e) $3\pi(e+1)$
9. The series

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$$

- (a) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (b) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (c) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ (d) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$
- (e) diverges by limit comparison test

10. The series

$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

is

(a) convergent and its sum is ⁵/₂
(b) convergent and its sum is ⁹/₂
(c) convergent and its sum is ³/₂
(d) divergent
(e) convergent and its sum is ⁷/₂

11. Let
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$
, then $\lim_{n \to \infty} a_n$

- (a) converges to 2
- (b) does not exist
- (c) converges to -1
- (d) converges to 0
- (e) converges to 1

12. The series
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$
 is

- (a) divergent by integral test
- (b) a series where the integral test is not applicable
- (c) convergent by integral test
- (d) convergent to $\frac{1}{3e}$
- (e) divergent by divergence test

13. The series $\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$ is

(a) convergent with sum =
$$\frac{3e}{3-e}$$

(b) convergent with sum = $\frac{e}{3-2e}$
(c) divergent
(d) convergent with sum = $\frac{e}{3-e}$
(e) convergent with sum = $\frac{3e}{3+e}$

14. The length of the curve $f(x) = 3 + \frac{1}{2} \cosh 2x$ over [0, 1] is equal to

(a)
$$\frac{1}{3}\sinh 3$$

(b) $\sinh 3$
(c) $\frac{1}{2}\sinh 2$
(d) $\sinh 2$
(e) $\frac{1}{2}\sinh 4$

15. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 is

- (a) a convergent p-series
- (b) a convergent geometric series
- (c) a divergent geometric series
- (d) a convergent alternating series
- (e) a divergent p-series

16. The series
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

- (a) converges conditionally
- (b) diverges by the ratio test
- (c) converges by the ratio test
- (d) converges by the root test
- (e) converges by integral test

- 17. Using the Integral Test Remainder Estimate for the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, we find that the smallest number of terms need to be added such that $|\text{error}| < 10^{-2}$ is
 - (a) 105
 - (b) 97
 - (c) 99
 - (d) 103
 - (e) 101

18. The series

$$\sum_{n=1}^{\infty} (\tan^{-1} n)^n$$

- (a) a series where the ratio test is inconclusive
- (b) a series where the root test is inconclusive
- (c) converges by the root test
- (d) diverges by the root test
- (e) converges by the ratio test

19. The power series representation for the function $f(x) = \frac{x^4}{(1+x)^2}$ is

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} (n+2) x^n$$
, $|x| < 1$
(b) $\sum_{n=2}^{\infty} (-1)^n n x^{n+2}$, $|x| < 1$
(c) $\sum_{n=1}^{\infty} (-1)^n (n+1) x^{n+2}$, $|x| < 1$
(d) $\sum_{n=1}^{\infty} (-1)^{n+1} n x^{n+3}$, $|x| < 1$
(e) $\sum_{n=1}^{\infty} (-1)^n n x^{n+4}$, $|x| < 1$

20. The area of the region in the first quadrant enclosed by the curves y = x, $y = \frac{1}{x}$ and $y = \frac{1}{4}x$ is equal to

- (a) ln 6
- (b) ln 4
- (c) $\ln 2$
- (d) ln 3
- (e) ln 5

21. The interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

is

- (a) (1,3)
- (b) [1,3)
- (c) [1,3]
- (d) (1,3]
- (e) $(-\infty,\infty)$

22. The Taylor series for $f(x) = e^{2x}$ centered at a = 3 is given by

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} (x-3)^n$$
, $R = \infty$
(b) $\sum_{n=0}^{\infty} 2^n e^6 (x-3)^n$, $R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{e^6}{n!} (x-3)^n$, $R = \infty$
(d) $\sum_{n=0}^{\infty} 2^n (x-3)^n$, $R = \infty$
(e) $\sum_{n=0}^{\infty} \frac{2^n e^6}{n!} (x-3)^n$, $R = \infty$

23. The Maclaurin series for $f(x) = x \cos\left(\frac{x^2}{2}\right)$ is

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}(2n)!} x^{4n+1}, R = \infty$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n+1}, R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}} x^{4n+1}, R = \infty$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+2}, R = \infty$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+1}, R = \infty$

24. Estimating the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 using three rectangles and right points is equal to

- (a) 8
- (b) 16
- (c) 14
- (d) 10
- (e) 12

25. The first three nonzero terms of the Maclaurin series for the function $f(x)=(1-x)^{1/4}$ are

(a)
$$1 - \frac{1}{4}x - \frac{3}{32}x^2$$

(b) $1 - \frac{1}{4}x - \frac{3}{16}x^2$
(c) $1 - \frac{1}{4}x + \frac{3}{32}x^2$
(d) $1 + \frac{1}{4}x - \frac{3}{32}x^2$
(e) $1 + \frac{1}{4}x - \frac{3}{16}x^2$

26.
$$-\ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \dots =$$

(a) 2
(b)
$$-2$$

(c) $-\frac{1}{2}$
(d) $\frac{1}{4}$
(e) $\frac{1}{2}$

27.
$$\int_0^1 \frac{dx}{1+x^6} =$$

(a)
$$\sum_{n=0}^{\infty} \frac{1}{6n+2}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{6n+2}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+2}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{6n+2}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+1}$

28. Using the method of cylindrical shell, the volume of the solid generated by revolving about the line x = 2 the region bounded by $y = x - x^2$ and y = 0 is equal to

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{5}$ (d) $\frac{\pi}{2}$ (e) $\frac{\pi}{4}$ King Fahd University of Petroleum and Minerals Department of Mathematics

CODE03

CODE03

Math 102 Final Exam 213 August 09, 2022 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has <u>28</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The average value of
$$f(x) = \sec^2\left(\frac{x}{2}\right)$$
 over $\left[0, \frac{\pi}{2}\right]$ is equal to

(a)
$$\frac{12}{\pi}$$

(b)
$$\frac{6}{\pi}$$

(c)
$$\frac{8}{\pi}$$

(d)
$$\frac{4}{\pi}$$

(e)
$$\frac{10}{\pi}$$

2. If
$$y = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$
, then $\frac{dy}{dx}$ at $x = 0$ is equal to

3. The improper integral
$$\int_{-2}^{3} \frac{1}{x^4} dx$$
 is

(b) convergent to
$$\frac{1}{2}$$

(c) convergent to $\frac{1}{4}$
(d) convergent to $-\frac{1}{4}$
(e) convergent to $-\frac{1}{2}$

$$4. \quad \int x\sqrt{1-x^4} \, dx =$$

(a)
$$\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$$

(b) $\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$
(c) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$
(d) $\frac{1}{4}\sin^{-1}(x^2) - \frac{1}{8}x^2\sqrt{1-x^4} + c$
(e) $\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$

5.
$$\int \frac{x^3 + 4}{x^2 + 4} \, dx =$$

(a)
$$\frac{1}{2}x^2 - 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$$

(b) $x^2 - 2\ln(x^2 + 4) - \tan^{-1}\left(\frac{x}{2}\right) + c$
(c) $4x^2 - 2\ln(x^2 + 4) - 2\tan^{-1}\left(\frac{x}{2}\right) + c$
(d) $\frac{1}{2}x^2 - 2\ln(x^2 + 4) - 4\tan^{-1}\left(\frac{x}{2}\right) + c$
(e) $3x^2 + 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$

$$6. \int \frac{\cos^5 x}{\sqrt{\sin x}} \, dx =$$

(a)
$$2\sqrt{\sin x} + \sin^{5/2} x + \frac{1}{9} \sin^{9/2} x + c$$

(b) $\sqrt{\sin x} + \frac{4}{5} \sin^{5/2} x + \sin^{9/2} x + c$
(c) $\sqrt{\sin x} - \frac{1}{5} \sin^{4/5} x + \frac{2}{9} \sin^{9/2} x + c$
(d) $4\sqrt{\sin x} - \frac{1}{5} \sin^{4/5} x - \frac{2}{9} \sin^{9/2} x + c$
(e) $2\sqrt{\sin x} - \frac{4}{5} \sin^{5/2} x + \frac{2}{9} \sin^{9/2} x + c$

$$7. \int \tan^{-1}(4x) =$$

(a)
$$2 \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$$

(b) $x \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$
(c) $2x \tan^{-1}(4x) - \frac{7}{8} \ln (1 + 16x^2) + c$
(d) $3x \tan^{-1}(4x) + \frac{7}{8} \ln (1 + 16x^2) + c$
(e) $3 \tan^{-1}(4x) + \frac{1}{8} \ln (1 + 16x^2) + c$

- 8. The area of the surface obtained by rotating the curve $y = \sqrt{1 + e^x}$, $0 \le x \le 1$ about x-axis is equal to
 - (a) $2\pi(e-1)$
 - (b) $2\pi(e+4)$
 - (c) $\pi(e+1)$
 - (d) $\pi(e-1)$
 - (e) $3\pi(e+1)$

9. The series

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$$

- (a) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ (b) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ (c) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$
- (d) diverges by limit comparison test
- (e) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$

10. The series
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$
 is

- (a) convergent to $\frac{1}{3e}$
- (b) a series where the integral test is not applicable
- (c) convergent by integral test
- (d) divergent by integral test
- (e) divergent by divergence test

11. The series $\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$ is

(a) convergent with sum = $\frac{3e}{3-e}$ (b) convergent with sum = $\frac{3e}{3+e}$ (c) divergent (d) convergent with sum = $\frac{e}{3-2e}$ (e) convergent with sum = $\frac{e}{3-e}$

12. The length of the curve $f(x) = 3 + \frac{1}{2} \cosh 2x$ over [0, 1] is equal to

(a)
$$\frac{1}{2} \sinh 4$$

(b) $\frac{1}{2} \sinh 2$
(c) $\sinh 2$
(d) $\frac{1}{3} \sinh 3$
(e) $\sinh 3$

13. The series

$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

is

- (a) convergent and its sum is $\frac{3}{2}$
- (b) divergent
- (c) convergent and its sum is $\frac{7}{2}$ (d) convergent and its sum is $\frac{9}{2}$
- (e) convergent and its sum is $\frac{5}{2}$

14. Let
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$
, then $\lim_{n \to \infty} a_n$

- (a) converges to -1
- (b) converges to 2
- (c) converges to 0
- (d) converges to 1
- (e) does not exist

- (a) $\ln 2$
- (b) ln 3
- (c) ln 6
- (d) $\ln 5$
- (e) ln 4

16. The series
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

- (a) diverges by the ratio test
- (b) converges conditionally
- (c) converges by the root test
- (d) converges by integral test
- (e) converges by the ratio test

CODE03

17. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 is

- (a) a convergent alternating series
- (b) a divergent geometric series
- (c) a divergent p-series
- (d) a convergent geometric series
- (e) a convergent p-series

18. The interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

is

- (a) $(-\infty, \infty)$ (b) [1, 3)(c) (1, 3](d) (1, 3)
- (e) [1,3]

19. The series

$$\sum_{n=1}^{\infty} (\tan^{-1} n)^n$$

- (a) converges by the root test
- (b) diverges by the root test
- (c) a series where the ratio test is inconclusive
- (d) converges by the ratio test
- (e) a series where the root test is inconclusive

20. Using the Integral Test Remainder Estimate for the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, we find that the smallest number of terms need to be added such that $|\text{error}| < 10^{-2}$ is

- (a) 99
- (b) 97
- (c) 105
- (d) 101
- (e) 103

21. The power series representation for the function $f(x) = \frac{x^4}{(1+x)^2}$ is

(a)
$$\sum_{n=2}^{\infty} (-1)^n n x^{n+2}$$
, $|x| < 1$
(b) $\sum_{n=1}^{\infty} (-1)^n n x^{n+4}$, $|x| < 1$
(c) $\sum_{n=1}^{\infty} (-1)^{n+1} n x^{n+3}$, $|x| < 1$
(d) $\sum_{n=1}^{\infty} (-1)^n (n+1) x^{n+2}$, $|x| < 1$
(e) $\sum_{n=1}^{\infty} (-1)^{n+1} (n+2) x^n$, $|x| < 1$

22.
$$\int_0^1 \frac{dx}{1+x^6} =$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+2}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{6n+2}$
(c) $\sum_{n=1}^{\infty} \frac{1}{6n+2}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+1}$
(e) $\sum_{n=0}^{\infty} \frac{1}{6n+2}$

- 23. Estimating the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 using three rectangles and right points is equal to
 - (a) 10
 - (b) 12
 - (c) 8
 - (d) 14
 - (e) 16

24.
$$-\ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \dots =$$

(a) $\frac{1}{4}$
(b) 2
(c) $\frac{1}{2}$
(d) -2
(e) $-\frac{1}{2}$

25. The Maclaurin series for $f(x) = x \cos\left(\frac{x^2}{2}\right)$ is

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n+1}, R = \infty$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}} x^{4n+1}, R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}(2n)!} x^{4n+1}, R = \infty$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+1}, R = \infty$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+2}, R = \infty$

26. The first three nonzero terms of the Maclaurin series for the function $f(x) = (1-x)^{1/4}$ are

(a)
$$1 - \frac{1}{4}x + \frac{3}{32}x^2$$

(b) $1 - \frac{1}{4}x - \frac{3}{32}x^2$
(c) $1 + \frac{1}{4}x - \frac{3}{32}x^2$
(d) $1 + \frac{1}{4}x - \frac{3}{16}x^2$
(e) $1 - \frac{1}{4}x - \frac{3}{16}x^2$

- 27. Using the method of cylindrical shell, the volume of the solid generated by revolving about the line x = 2 the region bounded by $y = x x^2$ and y = 0 is equal to
 - (a) $\frac{\pi}{5}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{3}$ (e) $\frac{\pi}{6}$

28. The Taylor series for $f(x) = e^{2x}$ centered at a = 3 is given by

(a)
$$\sum_{n=0}^{\infty} 2^n e^6 (x-3)^n$$
, $R = \infty$
(b) $\sum_{n=0}^{\infty} \frac{e^6}{n!} (x-3)^n$, $R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{2^n e^6}{n!} (x-3)^n$, $R = \infty$
(d) $\sum_{n=0}^{\infty} 2^n (x-3)^n$, $R = \infty$
(e) $\sum_{n=0}^{\infty} \frac{2^n}{n!} (x-3)^n$, $R = \infty$

King Fahd University of Petroleum and Minerals Department of Mathematics

CODE04

CODE04

Math 102 Final Exam 213 August 09, 2022 Net Time Allowed: 180 Minutes

Name		
ID	Sec	

Check that this exam has <u>28</u> questions.

Important Instructions:

- 1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The average value of
$$f(x) = \sec^2\left(\frac{x}{2}\right)$$
 over $\left[0, \frac{\pi}{2}\right]$ is equal to

(a)
$$\frac{10}{\pi}$$

(b)
$$\frac{8}{\pi}$$

(c)
$$\frac{6}{\pi}$$

(d)
$$\frac{4}{\pi}$$

(e)
$$\frac{12}{\pi}$$

2. The improper integral
$$\int_{-2}^{3} \frac{1}{x^4} dx$$
 is

(a) divergent
(b) convergent to
$$\frac{1}{4}$$

(c) convergent to $-\frac{1}{4}$
(d) convergent to $-\frac{1}{2}$
(e) convergent to $\frac{1}{2}$

3. If
$$y = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$
, then $\frac{dy}{dx}$ at $x = 0$ is equal to

$$4. \ \int x\sqrt{1-x^4} \, dx =$$

(a)
$$\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$$

(b) $\frac{1}{8}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$
(c) $\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{4}x^2\sqrt{1-x^4} + c$
(d) $\frac{1}{4}\sin^{-1}(x^2) - \frac{1}{8}x^2\sqrt{1-x^4} + c$
(e) $\frac{1}{4}\sin^{-1}(x^2) + \frac{1}{8}x^2\sqrt{1-x^4} + c$

5.
$$\int \frac{\cos^5 x}{\sqrt{\sin x}} \, dx =$$

(a)
$$\sqrt{\sin x} + \frac{4}{5} \sin^{5/2} x + \sin^{9/2} x + c$$

(b) $2\sqrt{\sin x} + \sin^{5/2} x + \frac{1}{9} \sin^{9/2} x + c$
(c) $2\sqrt{\sin x} - \frac{4}{5} \sin^{5/2} x + \frac{2}{9} \sin^{9/2} x + c$
(d) $4\sqrt{\sin x} - \frac{1}{5} \sin^{4/5} x - \frac{2}{9} \sin^{9/2} x + c$
(e) $\sqrt{\sin x} - \frac{1}{5} \sin^{4/5} x + \frac{2}{9} \sin^{9/2} x + c$

$$6. \int \tan^{-1}(4x) =$$

(a)
$$2 \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$$

(b) $x \tan^{-1}(4x) - \frac{1}{8} \ln (1 + 16x^2) + c$
(c) $2x \tan^{-1}(4x) - \frac{7}{8} \ln (1 + 16x^2) + c$
(d) $3 \tan^{-1}(4x) + \frac{1}{8} \ln (1 + 16x^2) + c$
(e) $3x \tan^{-1}(4x) + \frac{7}{8} \ln (1 + 16x^2) + c$

7.
$$\int \frac{x^3 + 4}{x^2 + 4} dx =$$

(a)
$$\frac{1}{2}x^2 - 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$$

(b) $\frac{1}{2}x^2 - 2\ln(x^2 + 4) - 4\tan^{-1}\left(\frac{x}{2}\right) + c$
(c) $4x^2 - 2\ln(x^2 + 4) - 2\tan^{-1}\left(\frac{x}{2}\right) + c$
(d) $x^2 - 2\ln(x^2 + 4) - \tan^{-1}\left(\frac{x}{2}\right) + c$
(e) $3x^2 + 2\ln(x^2 + 4) + 2\tan^{-1}\left(\frac{x}{2}\right) + c$

8. The series

$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

is

(a) convergent and its sum is ⁷/₂
(b) convergent and its sum is ³/₂
(c) divergent
(d) convergent and its sum is ⁵/₂
(e) convergent and its sum is ⁹/₂

9. The series
$$\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$$
 is

(a) convergent with sum
$$=$$
 $\frac{e}{3-e}$
(b) divergent
(c) convergent with sum $=$ $\frac{3e}{3-e}$
(d) convergent with sum $=$ $\frac{3e}{3+e}$
(e) convergent with sum $=$ $\frac{e}{3-2e}$

10. Let
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$
, then $\lim_{n \to \infty} a_n$

- (a) converges to 1
- (b) converges to -1
- (c) does not exist
- (d) converges to 2
- (e) converges to 0

11. The series
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$
 is

- (a) divergent by integral test
- (b) convergent to $\frac{1}{3e}$
- (c) convergent by integral test
- (d) divergent by divergence test
- (e) a series where the integral test is not applicable

12. The length of the curve $f(x) = 3 + \frac{1}{2} \cosh 2x$ over [0, 1] is equal to

(a)
$$\sinh 3$$

(b) $\frac{1}{3} \sinh 3$
(c) $\frac{1}{2} \sinh 4$
(d) $\sinh 2$
(e) $\frac{1}{2} \sinh 2$

13. The series

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^3 + 4n + 3}}$$

(a) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ (b) diverges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (c) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{1/6}}$ (d) converges by comparing with $\sum_{n=1}^{\infty} \frac{1}{n^{7/6}}$ (e) diverges by limit comparison test

- 14. The area of the surface obtained by rotating the curve $y = \sqrt{1 + e^x}, 0 \le x \le 1$ about x-axis is equal to
 - (a) 2π(e+4)
 (b) π(e+1)
 (c) 2π(e-1)
 (d) 3π(e+1)
 - (a) $\delta \pi (e + 1)$ (e) $\pi (e - 1)$

- 15. Using the Integral Test Remainder Estimate for the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, we find that the smallest number of terms need to be added such that $|\text{error}| < 10^{-2}$ is
 - (a) 105
 - (b) 101
 - (c) 99
 - (d) 103
 - (e) 97

16. The series $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

- (a) converges by the ratio test
- (b) converges by the root test
- (c) diverges by the ratio test
- (d) converges by integral test
- (e) converges conditionally

17. The power series representation for the function $f(x) = \frac{x^4}{(1+x)^2}$ is

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n x^{n+3}, |x| < 1$$

(b) $\sum_{n=1}^{\infty} (-1)^{n+1} (n+2) x^n, |x| < 1$
(c) $\sum_{n=1}^{\infty} (-1)^n n x^{n+4}, |x| < 1$
(d) $\sum_{n=2}^{\infty} (-1)^n n x^{n+2}, |x| < 1$
(e) $\sum_{n=1}^{\infty} (-1)^n (n+1) x^{n+2}, |x| < 1$

18. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
 is

- (a) a divergent p-series
- (b) a convergent alternating series
- (c) a convergent p-series
- (d) a convergent geometric series
- (e) a divergent geometric series

CODE04

19. The series

$$\sum_{n=1}^{\infty} (\tan^{-1} n)^n$$

- (a) converges by the ratio test
- (b) a series where the ratio test is inconclusive
- (c) a series where the root test is inconclusive
- (d) converges by the root test
- (e) diverges by the root test

20. The area of the region in the first quadrant enclosed by the curves y = x, $y = \frac{1}{x}$ and $y = \frac{1}{4}x$ is equal to

- (a) ln 6
- (b) $\ln 3$
- (c) $\ln 5$
- (d) ln 4
- (e) ln 2
21. The interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

is

- (a) $(-\infty,\infty)$
- (b) [1,3]
- (c) (1,3]
- (d) (1,3)
- (e) [1,3)

22. The Maclaurin series for
$$f(x) = x \cos\left(\frac{x^2}{2}\right)$$
 is

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+1}, R = \infty$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}} x^{4n+1}, R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^{2n}(2n)!} x^{4n+2}, R = \infty$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{4n+1}, R = \infty$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}(2n)!} x^{4n+1}, R = \infty$$

CODE04

23. $-\ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \ldots =$

(a) 2
(b)
$$-2$$

(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
(e) $-\frac{1}{2}$

24.
$$\int_0^1 \frac{dx}{1+x^6} =$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{6n+2}$$

(b) $\sum_{n=0}^{\infty} \frac{1}{6n+2}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+2}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{6n+2}$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{6n+1}$

- 25. Estimating the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 using three rectangles and right points is equal to
 - (a) 8
 - (b) 12
 - (c) 10
 - (d) 16
 - (e) 14

26. Using the method of cylindrical shell, the volume of the solid generated by revolving about the line x = 2 the region bounded by $y = x - x^2$ and y = 0 is equal to

Page 14 of 14

27. The Taylor series for $f(x) = e^{2x}$ centered at a = 3 is given by

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} (x-3)^n$$
, $R = \infty$
(b) $\sum_{n=0}^{\infty} 2^n e^6 (x-3)^n$, $R = \infty$
(c) $\sum_{n=0}^{\infty} \frac{e^6}{n!} (x-3)^n$, $R = \infty$
(d) $\sum_{n=0}^{\infty} \frac{2^n e^6}{n!} (x-3)^n$, $R = \infty$
(e) $\sum_{n=0}^{\infty} 2^n (x-3)^n$, $R = \infty$

28. The first three nonzero terms of the Maclaurin series for the function $f(x)=(1-x)^{1/4}$ are

(a)
$$1 + \frac{1}{4}x - \frac{3}{16}x^2$$

(b) $1 - \frac{1}{4}x + \frac{3}{32}x^2$
(c) $1 - \frac{1}{4}x - \frac{3}{32}x^2$
(d) $1 + \frac{1}{4}x - \frac{3}{32}x^2$
(e) $1 - \frac{1}{4}x - \frac{3}{16}x^2$

Math 102, 213, Final Exam

Answer KEY

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	А	A 7	B 2	D 1	D 1
2	A	D 1	С 6	E ₃	A 7
3	А	В 6	A 4	A 7	В 3
4	А	B 4	D 1	B 5	С 5
5	А	A 5	В 7	A 4	С 6
6	А	Сз	D 3	Е 6	B 2
7	A	E 2	A 5	В 2	A 4
8	A	Е 14	D 9	С 9	В 11
9	А	С 11	D 14	A 14	С 12
10	A	Е 10	С 11	С 13	С 10
11	A	В 13	В 10	A 12	С 13
12	А	A ₉	С 13	В 8	E ₈
13	A	D 12	A 12	A 11	D 14
14	A	E ₈	С в	Е 10	В ,
15	A	В 20	D 16	A 21	В 15
16	A	D 15	В 17	A 17	С 17
17	А	В 18	Е 15	A 16	A 20
18	А	E 17	D 18	Е 19	В 16
19	A	В 21	D 20	В 18	Е 18
20	А	С 19	$\rm C_{_{21}}$	D 15	E 21
21	А	D 16	С 19	$\mathrm{C}_{_{20}}$	В 19
22	A	D 22	E 26	D 23	E 28
23	А	E 23	A 28	$\mathrm{C}_{_{24}}$	E 25
24	A	В 24	A $_{24}$	E 25	E 23
25	A	A 28	A 27	C 28	A 24
26	A	A 27	$\mathrm{C}_{_{25}}$	B 27	A 22
27	A	E 25	E 23	C 22	D 26
28	A	A 26	D 22	C 26	C 27

Answer Counts

V	A	В	С	D	Е
1	6	7	3	5	7
2	6	4	7	8	3
3	8	5	7	3	5
4	5	7	7	3	6