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1. The average value of f(z) = sec? (g) over {0, g} is equal to

~~
®
N~—

(correct)

:]|5:]|5>1|oo>1|®>1|4>

2. / tan~(4z) =

(a) xtan '(4z) — éln (14 162%) + ¢ (correct)
(b) 2tan™!(4z) — éln (1+162%) +c

(¢) 3wtan ' (4x) + gln (14 162%) +c

(d) 3tan™'(4z) + éln (1+162°%) +c

7
(e) 2z tan~'(4z) — 3 In (1 + 162%) + ¢
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3x 2
u®—1 dy
3. Ify= du, then — at £ =0 1 1t
Yy /233 'U,2—|—1 u, en dxa X 1s equal TO

( ) (correct)
(b) 2

(c) =2

(d) =3

(e) 4

3 +4
4. / o dr =
(a) %x2 — 2 ln(x2 +4)+ 2tan ! (g) +c (correct)

_I_
o

(b) 2% — 2In(2® + 4) — tan™! (

(c) 42® — 2In(2* +4) — 2tan~

N TN —
N8R NS
+ o+
@) o

(d) 322 +2In(2® 4+ 4) + 2tan

1
(e) 5:1:2 —2In(2® +4) —4tan”!

DO | &
~
+
@)
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5. /x\/l—x4dx:

| MASTER |

1 1

(a) 1 sin~!(2?) + ZxQ l—zt+c
1 1

(b) 3 sin~*(2?) + ng l—at+c
1 1

(c) 1 sin ! (2%) + gxg l—zt+c
1 1

(d) 1 sin ! (z%) — §x2 l—zt+c
1 1

(e) 3 sin ! (2%) + ZxQ l—zt+c

cos’ x

6 dr =

' \Vsin x

(correct)

(correct)

4 2
(a) 2v/sinx — gsin5/2x + §sin9/2x +c

4
(b) Vsinx + 5sin5/2x +sin”?x + ¢

1 2
(c) 4v/sinx — 5sin4/5x — §sin9/2x +c
1
(d) 2v/sinz + sin®? x + §sin9/2x +c

1 2
(e) Vsinx — gsin4/5x+ §Sin9/2:1:+c
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3
1

7. The improper integral / — dr is
9 X

(a) divergent

| MASTER |

(correct)

(b) convergent to 5
(c) convergent to 1
(d) convergent to —=

1
(e) convergent to 2

1
8. The length of the curve f(x) =3+ 5 cosh 2z over [0, 1] is equal to

(correct)
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9. The area of the surface obtained by rotating the curve y = v/1+¢e%,0 < x <1
about z-axis is equal to

(a) ) (correct)
(b) 2m(e — 1)

(c) 3m(e+1)

(d) m(e —1)

(e) 2m(e+4)

( 1)nn3 .
10. Let a,, = RENEDRCREE then nh_}rglo an,
a) does not exist (correct)

(a)
(b) converges to 1
) converges to —1
(d) converges to 0
)

(e) converges to 2
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11. The series

oo

2
>

n=2

1S

(a) convergent and its sum is
(b) convergent and its sum is
(¢) convergent and its sum is

(d) convergent and its sum is

(e) divergent

en

12. The series Z T

n=1

(a) convergent with sum =
(b) convergent with sum =

(c) convergent with sum =

(d) convergent with sum =

(e) divergent

1S

| O NIt W

3—e

e

3 — 2e
3e
3+e

Page 6 of 14

| MASTER |

(correct)

(correct)
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o0
i 3.
13. The series g n?e™™ is

n=1

a) convergent by integral test

| MASTER |

(correct)

(
(b) divergent by integral test

€

)

)
1
(c) convergent to E
(d) divergent by divergence test
)

(e) a series where the integral test is not applicable

14. The series

Zm

) ) 1
(a) converges by comparing with z; 7
n=

1
(b) converges by comparing with Z %
n

1

(c) diverges by comparing with Z 7

1

(d) diverges by comparing with Z —7
n

(e) diverges by limit comparison test

(correct)
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oo

1
15. Using the Integral Test Remainder Estimate for the series E =,
n
n=1

smallest number of terms need to be added such that |error| < 1072 is

we find that the

(correct)

1S

. o (_1)n
16. The series E
— Vn

a) a convergent alternating series (correct)

(
(

b) a convergent geometric series

)
)
(c) a divergent p-series
(d) a convergent p-series
)

(e) a divergent geometric series
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. The series

M8

S
l
—

a) diverges by the ratio test

| MASTER |

(correct)

(a)

(b) converges by the ratio test

(c) converges by the root test

(d) converges by integral test
)

(e) converges conditionally

18. The series

(0.9]

Z(tan_l n)"

n=1

a) diverges by the root test

(correct)

(
(b) converges by the root test

d

(e) a series where the ratio test is inconclusive

)
)
(c) converges by the ratio test
(d) a series where the root test is inconclusive
)
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19. The interval of convergence of the series

1S

(a) [1,3] (correct)
(b) (1,3]

(c) [1,3)

(d) (1,3)

(€) (—o0,00)

20. The power series representation for the function f(z) =

(_1)n+1nxn+37 |:U| <1 (correct)

(a)

NE

S
|
—_

(=)™ (n+ 1):13”+2, x| <1

G
WE

S
[
—_

(=)™ (n+2)a", |2 <1

D
WE

S
|
_

(—1)"na"™ |2] < 1

a
WE

S
Il
_

(—1)"na" " |z] < 1

S
WE

i
[N}
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1
21. The area of the region in the first quadrant enclosed by the curves y = z, y = —
x

1
and y = 1" is equal to

In 2 (correct)

22. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line z = 2 the region bounded by y = x — 22 and y = 0 is equal to

(correct)

S R e RN e N
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o0 _1 n
(a) Z 6( ) 1 (correct)

24. Estimating the area under the graph of f(z) = 1+ 2% from 2 = —1 to 2 = 2 using
three rectangles and right points is equal to

(a) 8 (correct)
(b) 10
(c) 12
(d) 14
(e) 16
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Page 13 of 14 | MASTER |
25, —In 2420 (m2f
1
(a) —5 (correct)
1
b) =
OF
(c) 2
(d) =2
1
(e) 1
26. The Taylor series for f(z) = €2* centered at a = 3 is given by
0 N o6
(a) ‘ (CL‘ — 3)”, R =00 (correct)
o n!
)Y L) R = oo
— n! ’
(c) Z%E(a:—?)) , R =00
(d) > 2"ef(x —3)", R =00
n=0
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27. The first three nonzero terms of the Maclaurin series for the function
f(z) = (1 —z)"* are

(correct)

2
28. The Maclaurin series for f(x) = z cos (%) is

(a) Z (_1) x4”+1, R =00 (correct)
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Check that this exam has 28 questions.

Important Instructions:

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left
corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the
numbers that you write.

6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as
that printed on your question paper.

7. When bubbling, make sure that the bubbled space is fully covered.

8. When erasing a bubble, make sure that you do not leave any trace of penciling.
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3

1
1. The improper integral / — dx is

21‘4

(a) divergent

(b) convergent to 1

(c) convergent to ~5
1

(d) convergent to 5

(e) convergent to 2

2. The average value of f(z) = sec? (g) over [O, g} is equal to

&2 = =T =
>1|OO>1|»J>>1|®:]|B:]|S

—~
@
~
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COS5 T

3.
\Vsinx

dr =

(a) 4\/@—%sin4/5x—gsing/2x—|—c
(b) 2@—§sin5/2x+gsin9/2x+c
(c) \/@—%sin4/5x+§sing/2x+c
(d) \/sin—x+§sin5/zx+sin9/2x+c

1
(e) 2v/sinz + sin®? z + 9 sin”? z + ¢

(a) 42® —2In(2? +4) — 2tan”’

~~

| 8

~—
+
o

2
1

(b) 5u* = 21n(a? +4) + 2 tan ™" (%) np
1

(c) 5:):2 —2In(2* +4) —4tan™! (g) +c

+
o

(d) 2% — 2In(z® +4) — tan™* (

N8
AN —
N |8
N

(e) 322 +2In(2® 4+ 4) + 2tan ! +c
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5. /SU\/l —xtdr =

1 1

(a) 1 sin~!(2?) + ZxQ l—zt+c
1 1

(b) 3 sin~*(2?) + Z:UQ l—at+c
1 1

(c) 1 sin~!(2%) — gxg l—zt+c
1 1

(d) 3 sin ! (2%) + §x2 l—zt+c
1 1

(e) 1 sin ! (2%) + ng l—zt+c

3z, 2
u - —1 dy
6. If y = du, then — at © =0 i 1t
Yy /236 21 u, then —— at & is equal to
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7. /tan1(4x) =

(a) 2tan ' (4x) — %ln (14 162%) + ¢
(b) 3z tan~'(4x) + gln (14 162%) + ¢
(c) 3tan'(4z) + %ln (14 162%) + ¢
(d) 22 tan~(4z) — gln (1+1622) + ¢

1
(e) ztan '(4x) — 3 In (14 162%) + ¢

8. The series

>
— Vn?+4n +3

) ) 1
(a) converges by comparing with Z 1

1
(b) diverges by comparing with Z 5
n

) ) . 1
(c) diverges by comparing with 2_: 7

(d) diverges by limit comparison test

1
(e) converges by comparing with Z T
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9. The series

oo

2
>

n=2

1S

(a) convergent and its sum is
(b) convergent and its sum is
(¢) convergent and its sum is

(d) convergent and its sum is

(e) divergent

DO TN LN © DN Ot

converges to 1

converges to 0

(d
(e

)
)

(c) converges to —1
) converges to 2
)

does not exist

, then lim a,,

Page 5 of 14
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o0
i 3.
11. The series g n?e™™ is

n=1

(a) convergent to —
e
(

b) convergent by integral test

)
)
(c) a series where the integral test is not applicable
(d) divergent by integral test

)

(e) divergent by divergence test

12. The area of the surface obtained by rotating the curve y = 1 +¢e%,0 < z <1
about r-axis is equal to
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en

3n—1

18

13. The series Z

n=1

3
(a) convergent with sum = €
3+e
(b) divergent
(c) convergent with sum = 3 €
—e
3
(d) convergent with sum = ; €
—e
(e) convergent with sum = €
3 — 2e

1
14. The length of the curve f(z) =3 + 5 cosh 2z over [0, 1] is equal to

(a) sinh 3

(b) sinh 2
1
(c) 3 sinh 3

1
(d) 5 sinh 4

1
(e) 5 sinh 2
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15. The power series representation for the function f(z) =

(—1)"na" " |2] < 1

(a)

WE

i
[N}

(—1)n+1n$n+3, |ZC| <1

G
WE

i
I

(=1)"na"™ |2] < 1

<
WE

i
I

(D" (n+1)a"", |2 <1

a
WE

i
I

(=)™ (n+2)a", |2 <1

S
WE

i
—_

1
16. Using the Integral Test Remainder Estimate for the series E —, we find that the
n
n=1

smallest number of terms need to be added such that |error| < 1072 is
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17. The series

oo

Z(tanfl n)"

n=1

a) converges by the ratio test

(
(b) diverges by the root test

)
)
(c) a series where the root test is inconclusive
(d) converges by the root test

)

(e) a series where the ratio test is inconclusive

> |
18. The series ; 272:))2
(a) converges conditionally
(b) converges by integral test
(c) converges by the root test
(d) converges by the ratio test
)

(e) diverges by the ratio test
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1
19. The area of the region in the first quadrant enclosed by the curves y = x, y = —
x

1
and y = 1" is equal to

20. The interval of convergence of the series

1S

(a) (—00,00)
(b) (1,3)
(c) [1,3]
(d) 1,3)
(e) (1,3]
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. o0 (_1)n
21. The series g
vV

18

n=1

(a) a convergent geometric series

(b) a divergent p-series

(c) a convergent p-series

(d) a convergent alternating series
)

(e) a divergent geometric series

22. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line z = 2 the region bounded by y = x — 2? and y = 0 is equal to

gla3wl a3l
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Ch3=s
(c) nil 6n1+ 2
UpSTES
O St

Page 12 of 14

24. Estimating the area under the graph of f(z) = 1+ 2% from 2 = —1 to 2 = 2 using
three rectangles and right points is equal to

(a) 12
(b) 8
(c) 10
(d) 14
(e) 16
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2
25. The Maclaurin series for f(x) = x cos (%) is

26. The first three nonzero terms of the Maclaurin series for the function

f(z) = (1 —2)"* are

1 3
|2y 22
() 1= gw— g5
1 3
b) 14 -z — = g2
(b) 14w =557
(€) 14 37 — =7
C 45[3 16.’13
1 3
|2y 2.2
(d) 1 =gz = {eo
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27, —In 24 W25 _ (m2f

28. The Taylor series for f(x) = €?* centered at a = 3 is given by

(@) S (5 —3)", R=oo

n!
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Check that this exam has 28 questions.

Important Instructions:

1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left
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5. When bubbling your ID number and Section number, be sure that the bubbles match with the
numbers that you write.
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1. /tan1(4x) =

(a) 2xtan™'(4x) — gln (1+162°%) +c
(b) xtan ' (4x) — %ln (14 162%) + ¢
(c) 2tan™!(4x) — %ln (14 162%) + ¢
(d) 3z tan~(4z) + gln (1+1622) + ¢

1
(e) 3tan '(4x) + gl (14 162%) + ¢

cos®

' \Vsin x

2 dr =

1 2

(a) Vsinz — gsin4/5x—|— §Sin9/2x—|—c
1

(b) 2v/sinz + sin®? x + §sin9/2x +c

4 2
(c) 2v/sinx — 5sin5/2x + §sin9/2x +c

1 2
(d) 4v/sinz — 5sin4/5:13 — §Sin9/2:1: +c

4
(e) Vsinz + 581115/2:13 +sin”2z+¢
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2% 44
3. dr =
/x2+4 ‘

1
(a) 53:2 —2In(z% +4) 4+ 2tan"!

~—~

N8

~—
+
o

+
o

(b) 2? —2In(a® +4) — tan™" (

N8

7 N N——

(c) 322 +2In(2® 4+ 4) + 2tan!

1
(d) 5:5‘2 —2In(2® +4) —4tan™!

DO | 8
N
_|_
@)

o

~—~
DO &
~

+ o+
o

(e) 42 — 2In(2* +4) — 2tan "

—
DO | &8
~

X

4. The average value of f(z) = sec? (—) over {0, g} is equal to

2

~~
®
N~—

a
SEA ey | gl o
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3

1
5. The improper integral / — dx is

21‘4

1
(a) convergent to 5
(b) divergent

(c) convergent to 1
(d) convergent to —5

(e) convergent to 2

3z, 2
u - —1 dy
6. If y = du, then — at © =0 i 1t
Y /2x 21 u, then d:z:a x is equal to

(a) —2
(b) =3
(c) 2
(d) -1
(e) 4
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7. /SU\/l —xtdr =

1 1

a) —sin ' (2%) + ~a*V/1—at+ ¢

(a) 7 sin™( 1
1 1

(b) 3 sin~*(2?) + Z:UQ l—at+c
1 1

(c) 3 sin ! (2%) + gxg l—zt+c
1 1

(d) 1 sin ! (z%) — §x2 l—zt+c
1 1

(e) 1 sin ! (2%) + ng l—zt+c

8. The area of the surface obtained by rotating the curve y = /1 +¢e?, 0 <z < 1
about z-axis is equal to
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9. The series

Zm

(a) diverges by comparing with Z - /6

) ) 1
(b) converges by comparing with Zl 1

(c) diverges by comparing with Z T

1

(d) converges by comparing with Z 7

(e) diverges by limit comparison test

10. The series

oo

2
> i

n=2

1S

(a) convergent and its sum is
(b) convergent and its sum is

(c) convergent and its sum is

DN W N O DN Ot

(d) divergent

(e) convergent and its sum is
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(—1)n? |
11. Let a,, = RENEDRCRREE then Tllgglo ay,

converges to 2
b

)

) does not exist
(c) converges to —1
)

)

(a
(

converges to 0

(d
(e

converges to 1

0
i 3.
12. The series g n’e ™ is

n=1

(a) divergent by integral test
(

b) a series where the integral test is not applicable

(d) convergent to —
3e

)
)

(c) convergent by integral test
)

(e) divergent by divergence test
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en

3n—1

13. The series Z

n=1

18

3e
(a) convergent with sum = g
—e
e
b) convergent with s =
() nvergent wi um Ty
(c) divergent
(d) convergent with sum = ; ¢
—e
3
(e) convergent with sum = €
3+e

1
14. The length of the curve f(z) =3+ 5 cosh 2z over [0, 1] is equal to
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n

. The series Z
\/ﬁ

n=1

(a) a convergent p-series

(b) a convergent geometric series
(c) a divergent geometric series
(d) a convergent alternating series
)

(e) a divergent p-series

16. The series

|M8
85
| =

n=1

(a) converges conditionally

(b) diverges by the ratio test

(c) converges by the ratio test

(d) converges by the root test
)

(e) converges by integral test
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oo

1
17. Using the Integral Test Remainder Estimate for the series E =,
n
n=1

smallest number of terms need to be added such that |error| < 1072 is

we find that the

18. The series

oo

Z(tan_l n)"

n=1

a series where the ratio test is inconclusive

(2)
(b) a series where the root test is inconclusive
(c) converges by the root test
(d) diverges by the root test
)

(e) converges by the ratio test
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19. The power series representation for the function f(z) =

20. The area of the region in the first quadrant enclosed by the curves y = z, y = —
x

1
and y = Zx is equal to
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21. The interval of convergence of the series

= (z—2)"
nz_% (n2 + i
(a) (1,3)
(b) [1,3)
(c) [1,3]
(d) (1,3
(e) (—o0,00)

22. The Taylor series for f(x) = €2* centered at a = 3 is given by

(a) iQ—T;(fﬂg)n, R= o
(b) 7?;2%6(933)“, R = 0
© >S9 =
() nf;Z”(xB)”, R = oo
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2
23. The Maclaurin series for f(x) = x cos (%) is

24. Estimating the area under the graph of f(z) =1+ 22 from z = —1 to = 2 using

three rectangles and right points is equal to

(a) 8
(b) 16
(c) 14
(d) 10
(e) 12
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25. The first three nonzero terms of the Maclaurin series for the function
f(z) = (1 —z)"* are

1 3
(a) 1—%x—?x2
(b) 1—133—1—61‘2
(c) 1—ix+3%:1:2

1 3
(d) 1+%x—?az2
(e) 1+1x—1—6x2

(a) 2

(b) —2
1

(c) D)
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EpaEs
S w="
N
O St

Page 14 of 14

28. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line z = 2 the region bounded by y = x — 2? and y = 0 is equal to

RN owlaoly
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1. All types of calculators, smart watches or mobile phones are NOT allowed during the examination.
2. Use HB 2.5 pencils only.
3. Use a good eraser. DO NOT use the erasers attached to the pencil.

4. Write your name, ID number and Section number on the examination paper and in the upper left
corner of the answer sheet.

5. When bubbling your ID number and Section number, be sure that the bubbles match with the
numbers that you write.
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1. The average value of f(z) = sec? (g) over {0, g} is equal to

~~
®
N~—

a
N2l loa oy |3

3z, .2
—1 d
2. Ity = 4 du, then Y at = 0 is equal to
2
2 u® + 1

T X
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3

1
3. The improper integral / — dx is

21‘4

(a) divergent

(b) convergent to 5
(c) convergent to 1
(d) convergent to vl

1
(e) convergent to ~3

1 1

(a) 3 sin~!(2?) + Z:CQ l—zt+c
1 1

(b) 1 sin~t(2?) + ZxQ l—at+c
1 1

(c) 3 sin ™! (2%) + ng l—xt+c
1 1

(d) 1 sin ! (z%) — §x2 l—zt+c
1 1

(e) 1 sin~! (2%) + §x2 l—zt+c
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3
x’ +4
5. 5 dx =
¢+ 4

1
(a) 53:2 —2In(z% +4) 4+ 2tan"!

~—~

N8

~—
+
o

(b) 2% — 2In(z® +4) — tan™"

/N

(c) 42 — 2In(z* +4) — 2tan~

N N——
+
o

7 N
N—
_|_
@)

1
(d) 5% = 2In(a® +4) — 4 tan”! ) np
(e) 322 +2In(2® +4) + 2tan* (g) +c

COS5 T

. dr =
\Vsin x

6

1
(a) 2v/sinz + sin®? z + 9 sin??z + ¢

4
(b) Vsinz + gsin‘waj +sin”2z 4 ¢

1 2
(¢) Vsinx — gsin4/5a:+ §Sin9/2x+c

1 2
(d) 4vsinz — gsin4/5a: — §sin9/2x +c

4 2
(e) 2v/sinx — gsin5/2a: + §Sin9/2x +c
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7. /tan1(4x) =

(a) 2tan ' (4x) — %ln (14 162%) + ¢
(b) wtan '(4x) — %ln (1+162%) +c
(c) 2xtan™!(4z) — gln (14 162%) + ¢
(d) 3z tan~'(47) + gln (14 1622) + ¢

1
(e) 3tan '(4x) + gl (14 162%) + ¢

8. The area of the surface obtained by rotating the curve y = /1 +¢e?, 0 <z < 1
about z-axis is equal to
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9. The series

Zm

1
(a) converges by comparing with Z T
(b) diverges by comparing with Z . /6

) ) . 1
(c) diverges by comparing with Z 7

(d) diverges by limit comparison test

1

(e) converges by comparing with Z i

o
. _mn3 .
10. The series E n?e™™ is

n=1

a) convergent to —
Je

(
(b) a series where the integral test is not applicable

)
)
(c) convergent by integral test
(d) divergent by integral test

)

(e) divergent by divergence test
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en

3n—1

18

11. The series Z

n=1

3e
(a) convergent with sum = g
—e
3
(b) convergent with sum = ¢
3+e
(c) divergent
e
d) convergent with s =
() nvergent wi um Ty
e
(e) convergent with sum = ;
—e

1
12. The length of the curve f(x) =3+ ) cosh 2z over [0, 1] is equal to
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13. The series

= 2
>

n=2

1S

(a) convergent and its sum is

(b) divergent

(c) convergent and its sum is
(d) convergent and its sum is

(e) convergent and its sum is

converges to 2

converges to 1

(d
(e

)
)
(¢) converges to 0
)
)

does not exist

converges to —1

NN NG VR NN GRREN |

, then lim a,,
n—oo

Page 7 of 14
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1
15. The area of the region in the first quadrant enclosed by the curves y = x, y = —
x

1
and y = 1" is equal to

=, (2n)!
16. The series Z (( 7'3)2
n!

n=1

(a) diverges by the ratio test
(b) converges conditionally
(c) converges by the root test
(d) converges by integral test
)

(e) converges by the ratio test
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. The series Z
\/ﬁ

n=1

a) a convergent alternating series

b) a divergent geometric series
(c

d

(e) a convergent p-series

(
(
(

)

)

) a divergent p-series

) a convergent geometric series
)

18. The interval of convergence of the series

= (z —2)"
nz:; n?+1

1S

(a) (—00,00)
(b) 1,3)
(c) (1,3]
(d) (1,3)
(e) [1,3]
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19. The series

oo

Z(tanfl n)"

n=1
(a) converges by the root test
(b) diverges by the root test

)
)
(c) a series where the ratio test is inconclusive
(d) converges by the ratio test

)

(e) a series where the root test is inconclusive

1
20. Using the Integral Test Remainder Estimate for the series Z —, we find that the
n

n=1
smallest number of terms need to be added such that |error| < 1072 is
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21. The power series representation for the function f(z) =

(a) i(—mmm, 2| < 1

(b) i(—l)"nx"H, 2| < 1

(c) i(—1)"+lmn+3, 2| < 1
(d) i(_m (n+1)2"2 |z| < 1

(e) Y (=)™ (n+2)a", |z| < 1

~ gy
(b) ;én132

= 1
(c) ;6n+2

00 _1)n
(d) z:;énngl
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23. Estimating the area under the graph of f(z) = 1+ 2? from z = —1 to x = 2 using
three rectangles and right points is equal to

24, —In 24 W20 (¥,

15

—~ ~~
S

N— N— N— S—
| Dol = DN s =
(\)

—
@
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2
25. The Maclaurin series for f(x) = x cos (%) is

26. The first three nonzero terms of the Maclaurin series for the function

f(z) = (1 —2)"* are

1 3
2,4 2,2
(a) 4:U+325z:
1 3
b) 1 -~ — g2
(b) 1= 32— 53
(¢) 14 a0 — g
1T 32
1 3
{4 g 202
(d) +4x 16:15
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27. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line z = 2 the region bounded by y = x — 22 and y = 0 is equal to

WA [ o

28. The Taylor series for f(x) = €2* centered at a = 3 is given by

(a) Z 2"eS(z — 3)", R = o0

() iz—i(:ﬂ:s)n, R = oo
© > S a3 =
(d) §;2n(x3)”, R= oo
() ii-?@-@m R= oo
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1. The average value of f(z) = sec? (g) over {0, g} is equal to

~~
®
N~—

a
SgaleAloaloy |2

3

1
2. The improper integral / —dx is

25174

(a) divergent

1
(b) convergent to 1
(c) convergent to ~1
(d) convergent to —3

1
(e) convergent to 5
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3z 2
—1 d
3.Ify:/ Zz+1du,thend—iatxzoisequalto

(a) =3
(b) —1
(c) =2
(d) 2
(e) 4

1 1

(a) 3 sin ! (2%) + §x2 l—zt+c
1 1

(b) 3 sin ™! (2%) + Zx2 l—zt+c
1 1

(c) 1 sin ™! (2%) + Zﬁ l—zt+c
1 1

(d) 1 sin™!(2?) — ng 1—zt+c
1 1

(e) 1 sin~!(2?) + §$2 l—zt+c
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5
COS™ T
5. — dx =
VSN T

(a) \/@+§sin5/2x—|—sing/2a7+c

(b) 2@+sin5/2x+%sing/2x+c

(c) 2\/@—§sin5/2x+gsing/2x+c

(d) 4@—%sin4/5x—§sing/2x+c
1

(e) Vsinx — gsin4/5:c+ gsing/Qstrc

6. /tan1(4x) =

(a) 2tan ' (4x) — %ln (14 162%) + ¢
(b) ztan~'(4x) — %ln (14 162%) + ¢
(c) 2z tan'(4x) — gln (14 162%) +c
(d) 3tan(4z) + éln (1+1622) + ¢

(¢) 3 tan~"(4z) + gln (1+1622) + ¢
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2% 44
7. dr =
/x2+4 ‘

1

(a) 53:2 —2In(2* +4) + 2tan™! (g) +c
(b) %:ﬁ ~ 2In(2? + 4) — 4tan~! (g) np
(c) 42 — 2In(2* +4) — 2tan”! (g) +c
(d) 2* — 2In(2* +4) — tan™* (g) +c

(e) 32 + 2In(z” 4+ 4) + 2tan ™’ (g) +c

8. The series

= 2
>

n=2

1S

(a) convergent and its sum is

(b) convergent and its sum is

DO W N T

(c) divergent

(d) convergent and its sum is

N © Do Ot

(e) convergent and its sum is
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en

3n—1

18

9. The series Z

n=1

(a) convergent with sum =
(b) divergent
(c) convergent with sum =

(d) convergent with sum =

(e) convergent with sum =

o34+ 2n2+1

a) converges to 1

(a)

(b) converges to —1
) does not exist

(d) converges to 2

)

(e) converges to 0

e
3—e

3e
3—e
3e

3+e
e

3 — 2e

, then lim a,,

n—oo

Page 5 of 14
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o0
i 3.
11. The series g n?e™™ is

n=1

(a) divergent by integral test
(

b) convergent to —

)

) e
(c) convergent by integral test
(d)

)

d) divergent by divergence test

(e) a series where the integral test is not applicable

1
12. The length of the curve f(z) =3 + 5 cosh 2z over [0, 1] is equal to
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13. The series

y
— V/nd+4n + 3

(a) diverges by comparing with Z . /6

(b) diverges by comparing with Z - /6

1

(c) converges by comparing with Z i

1
(d) converges by comparing with Z T

(e) diverges by limit comparison test

14. The area of the surface obtained by rotating the curve y = /1 +¢e%,0 <z < 1
about z-axis is equal to

(a) 2m(e+4)
(b) m(e+1)

(c) 2m(e — 1)
(d) 3m(e+1)
(e) m(e—1)

W N

3

)
)
)
)
)
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oo

1
15. Using the Integral Test Remainder Estimate for the series E =,
n
n=1

smallest number of terms need to be added such that |error| < 1072 is

we find that the

oo

2n)!
16. The series Z (2n)
n=1

(n!)?

(a) converges by the ratio test
(

b) converges by the root test

)
)
(c) diverges by the ratio test
(d) converges by integral test
)

(e) converges conditionally
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17. The power series representation for the function f(r) = — is

n=1

(c) Z(—l)"nw"+4, lz| <1
n=1

(d) > (=1)"na™? |z <1
n=2

1S

N (D"
18. Th E
e series 2 NG

a) a divergent p-series

(
(b) a convergent alternating series

)

)
(c) a convergent p-series
(d) a convergent geometric series
)

(e) a divergent geometric series
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19. The series

oo

Z(tanfl n)"

n=1

(a) converges by the ratio test
(b) a series where the ratio test is inconclusive
(c) a series where the root test is inconclusive
(d) converges by the root test

)

(e) diverges by the root test

1
20. The area of the region in the first quadrant enclosed by the curves y = z, y = —
x

1
and y = Zx is equal to
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21. The interval of convergence of the series

= (z—2)"
nz_% (n2 + i
(a) (—00,00)
(b) [1,3]
(c) (1,3]
(d) (1,3)
(e) [1,3)

2
22. The Maclaurin series for f(x) = x cos (%) is
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23, —In 24 W25 _ 27
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25. Estimating the area under the graph of f(z) = 1+ 2? from z = —1 to x = 2 using
three rectangles and right points is equal to

(a) 8
(b) 12
(c) 10
(d) 16
(e) 14

26. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line z = 2 the region bounded by y = x — 22 and y = 0 is equal to

G
wlA A3
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27. The Taylor series for f(z) = €?* centered at a = 3 is given by

() 32 (e =3, R=oc
n=0

(b) Z 2"e%(x —3)", R = o0
n=0

(¢) D (e —3)" R=ro0
n=0
= 27¢0

@) 3 2 w3y, R=o
n=0

28. The first three nonzero terms of the Maclaurin series for the function

f(z) = (1 —z)"* are

1 3
(a) 1—|—Zx—1—6x2
(b) 1—%:13—1—3%332

1 3
(c) 1—%:1:—33—2:1:2
(d) 1—|—ZSC—3—2332

Page 14 of 14
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