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1. The average value of f(x) = sec2
(x
2

)
over

[
0,

π

2

]
is equal to

(a)
4

π
(correct)

(b)
6

π

(c)
8

π

(d)
10

π

(e)
12

π

2.

∫
tan−1(4x) =

(a) x tan−1(4x)− 1

8
ln (1 + 16x2) + c (correct)

(b) 2 tan−1(4x)− 1

8
ln (1 + 16x2) + c

(c) 3x tan−1(4x) +
7

8
ln (1 + 16x2) + c

(d) 3 tan−1(4x) +
1

8
ln (1 + 16x2) + c

(e) 2x tan−1(4x)− 7

8
ln (1 + 16x2) + c
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3. If y =

∫ 3x

2x

u2 − 1

u2 + 1
du, then

dy

dx
at x = 0 is equal to

(a) −1 (correct)

(b) 2

(c) −2

(d) −3

(e) 4

4.

∫
x3 + 4

x2 + 4
dx =

(a)
1

2
x2 − 2 ln(x2 + 4) + 2 tan−1

(x
2

)
+ c (correct)

(b) x2 − 2 ln(x2 + 4)− tan−1
(x
2

)
+ c

(c) 4x2 − 2 ln(x2 + 4)− 2 tan−1
(x
2

)
+ c

(d) 3x2 + 2 ln(x2 + 4) + 2 tan−1
(x
2

)
+ c

(e)
1

2
x2 − 2 ln(x2 + 4)− 4 tan−1

(x
2

)
+ c
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5.

∫
x
√

1− x4 dx =

(a)
1

4
sin−1(x2) +

1

4
x2
√

1− x4 + c (correct)

(b)
1

8
sin−1(x2) +

1

8
x2
√

1− x4 + c

(c)
1

4
sin−1(x2) +

1

8
x2
√

1− x4 + c

(d)
1

4
sin−1(x2)− 1

8
x2
√

1− x4 + c

(e)
1

8
sin−1(x2) +

1

4
x2
√

1− x4 + c

6.

∫
cos5 x√
sinx

dx =

(a) 2
√
sinx− 4

5
sin5/2 x+

2

9
sin9/2 x+ c (correct)

(b)
√
sinx+

4

5
sin5/2 x+ sin9/2 x+ c

(c) 4
√
sinx− 1

5
sin4/5 x− 2

9
sin9/2 x+ c

(d) 2
√
sinx+ sin5/2 x+

1

9
sin9/2 x+ c

(e)
√
sinx− 1

5
sin4/5 x+

2

9
sin9/2 x+ c
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7. The improper integral

∫ 3

−2

1

x4
dx is

(a) divergent (correct)

(b) convergent to
1

2

(c) convergent to
1

4

(d) convergent to −1

2

(e) convergent to −1

4

8. The length of the curve f(x) = 3 +
1

2
cosh 2x over [0, 1] is equal to

(a)
1

2
sinh 2 (correct)

(b) sinh 2

(c)
1

3
sinh 3

(d) sinh 3

(e)
1

2
sinh 4
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9. The area of the surface obtained by rotating the curve y =
√
1 + ex, 0 ≤ x ≤ 1

about x-axis is equal to

(a) π(e+ 1) (correct)

(b) 2π(e− 1)

(c) 3π(e+ 1)

(d) π(e− 1)

(e) 2π(e+ 4)

10. Let an =
(−1)nn3

n3 + 2n2 + 1
, then lim

n→∞
an

(a) does not exist (correct)

(b) converges to 1

(c) converges to −1

(d) converges to 0

(e) converges to 2
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11. The series

∞∑
n=2

2

n2 − 1

is

(a) convergent and its sum is
3

2
(correct)

(b) convergent and its sum is
5

2

(c) convergent and its sum is
7

2

(d) convergent and its sum is
9

2
(e) divergent

12. The series
∞∑
n=1

en

3n−1
is

(a) convergent with sum =
3e

3− e
(correct)

(b) convergent with sum =
e

3− e

(c) convergent with sum =
e

3− 2e

(d) convergent with sum =
3e

3 + e
(e) divergent
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13. The series
∞∑
n=1

n2e−n3

is

(a) convergent by integral test (correct)

(b) divergent by integral test

(c) convergent to
1

3e
(d) divergent by divergence test

(e) a series where the integral test is not applicable

14. The series

∞∑
n=1

3
√
n√

n3 + 4n+ 3

(a) converges by comparing with
∞∑
n=1

1

n7/6
(correct)

(b) converges by comparing with
∞∑
n=1

1

n1/6

(c) diverges by comparing with
∞∑
n=1

1

n1/6

(d) diverges by comparing with
∞∑
n=1

1

n7/6

(e) diverges by limit comparison test
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15. Using the Integral Test Remainder Estimate for the series
∞∑
n=1

1

n2
, we find that the

smallest number of terms need to be added such that |error| < 10−2 is

(a) 101 (correct)

(b) 99

(c) 103

(d) 105

(e) 97

16. The series
∞∑
n=1

(−1)n√
n

is

(a) a convergent alternating series (correct)

(b) a convergent geometric series

(c) a divergent p-series

(d) a convergent p-series

(e) a divergent geometric series
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17. The series
∞∑
n=1

(2n)!

(n!)2

(a) diverges by the ratio test (correct)

(b) converges by the ratio test

(c) converges by the root test

(d) converges by integral test

(e) converges conditionally

18. The series

∞∑
n=1

(tan−1 n)n

(a) diverges by the root test (correct)

(b) converges by the root test

(c) converges by the ratio test

(d) a series where the root test is inconclusive

(e) a series where the ratio test is inconclusive
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19. The interval of convergence of the series

∞∑
n=0

(x− 2)n

n2 + 1

is

(a) [1, 3] (correct)

(b) (1, 3]

(c) [1, 3)

(d) (1, 3)

(e) (−∞,∞)

20. The power series representation for the function f(x) =
x4

(1 + x)2
is

(a)
∞∑
n=1

(−1)n+1 nxn+3, |x| < 1 (correct)

(b)
∞∑
n=1

(−1)n (n+ 1)xn+2, |x| < 1

(c)
∞∑
n=1

(−1)n+1 (n+ 2)xn, |x| < 1

(d)
∞∑
n=1

(−1)n nxn+4, |x| < 1

(e)
∞∑
n=2

(−1)n nxn+2, |x| < 1
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21. The area of the region in the first quadrant enclosed by the curves y = x, y =
1

x

and y =
1

4
x is equal to

(a) ln 2 (correct)

(b) ln 3

(c) ln 4

(d) ln 5

(e) ln 6

22. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line x = 2 the region bounded by y = x− x2 and y = 0 is equal to

(a)
π

2
(correct)

(b)
π

4

(c)
π

3

(d)
π

6

(e)
π

5



213, Math 102, Final Exam Page 12 of 14 MASTER

23.

∫ 1

0

dx

1 + x6
=

(a)
∞∑
n=0

(−1)n

6n+ 1
(correct)

(b)
∞∑
n=1

(−1)n

6n+ 2

(c)
∞∑
n=0

(−1)n

6n+ 2

(d)
∞∑
n=1

1

6n+ 2

(e)
∞∑
n=0

1

6n+ 2

24. Estimating the area under the graph of f(x) = 1 + x2 from x = −1 to x = 2 using
three rectangles and right points is equal to

(a) 8 (correct)

(b) 10

(c) 12

(d) 14

(e) 16
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25. − ln 2 + (ln 2)2

2! − (ln 2)3

3! + . . . =

(a) −1

2
(correct)

(b)
1

2
(c) 2

(d) −2

(e)
1

4

26. The Taylor series for f(x) = e2x centered at a = 3 is given by

(a)
∞∑
n=0

2ne6

n!
(x− 3)n, R = ∞ (correct)

(b)
∞∑
n=0

2n

n!
(x− 3)n, R = ∞

(c)
∞∑
n=0

e6

n!
(x− 3)n, R = ∞

(d)
∞∑
n=0

2ne6(x− 3)n, R = ∞

(e)
∞∑
n=0

2n(x− 3)n, R = ∞
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27. The first three nonzero terms of the Maclaurin series for the function
f(x) = (1− x)1/4 are

(a) 1− 1

4
x− 3

32
x2 (correct)

(b) 1 +
1

4
x− 3

32
x2

(c) 1− 1

4
x+

3

32
x2

(d) 1− 1

4
x− 3

16
x2

(e) 1 +
1

4
x− 3

16
x2

28. The Maclaurin series for f(x) = x cos

(
x2

2

)
is

(a)
∞∑
n=0

(−1)n

22n(2n)!
x4n+1, R = ∞ (correct)

(b)
∞∑
n=0

(−1)n

(2n)!
x4n+1, R = ∞

(c)
∞∑
n=0

(−1)n

22n
x4n+1, R = ∞

(d)
∞∑
n=0

(−1)n

42n(2n)!
x4n+1, R = ∞

(e)
∞∑
n=0

(−1)n

42n(2n)!
x4n+2, R = ∞
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1. The improper integral

∫ 3

−2

1

x4
dx is

(a) divergent

(b) convergent to
1

4

(c) convergent to −1

2

(d) convergent to
1

2

(e) convergent to −1

4

2. The average value of f(x) = sec2
(x
2

)
over

[
0,

π

2

]
is equal to

(a)
10

π

(b)
12

π

(c)
6

π

(d)
4

π

(e)
8

π



213, Math 102, Final Exam Page 2 of 14 CODE01

3.

∫
cos5 x√
sinx

dx =

(a) 4
√
sinx− 1

5
sin4/5 x− 2

9
sin9/2 x+ c

(b) 2
√
sinx− 4

5
sin5/2 x+

2

9
sin9/2 x+ c

(c)
√
sinx− 1

5
sin4/5 x+

2

9
sin9/2 x+ c

(d)
√
sinx+

4

5
sin5/2 x+ sin9/2 x+ c

(e) 2
√
sinx+ sin5/2 x+

1

9
sin9/2 x+ c

4.

∫
x3 + 4

x2 + 4
dx =

(a) 4x2 − 2 ln(x2 + 4)− 2 tan−1
(x
2

)
+ c

(b)
1

2
x2 − 2 ln(x2 + 4) + 2 tan−1

(x
2

)
+ c

(c)
1

2
x2 − 2 ln(x2 + 4)− 4 tan−1

(x
2

)
+ c

(d) x2 − 2 ln(x2 + 4)− tan−1
(x
2

)
+ c

(e) 3x2 + 2 ln(x2 + 4) + 2 tan−1
(x
2

)
+ c
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5.

∫
x
√

1− x4 dx =

(a)
1

4
sin−1(x2) +

1

4
x2
√

1− x4 + c

(b)
1

8
sin−1(x2) +

1

4
x2
√

1− x4 + c

(c)
1

4
sin−1(x2)− 1

8
x2
√

1− x4 + c

(d)
1

8
sin−1(x2) +

1

8
x2
√

1− x4 + c

(e)
1

4
sin−1(x2) +

1

8
x2
√

1− x4 + c

6. If y =

∫ 3x

2x

u2 − 1

u2 + 1
du, then

dy

dx
at x = 0 is equal to

(a) −2

(b) −3

(c) −1

(d) 2

(e) 4
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7.

∫
tan−1(4x) =

(a) 2 tan−1(4x)− 1

8
ln (1 + 16x2) + c

(b) 3x tan−1(4x) +
7

8
ln (1 + 16x2) + c

(c) 3 tan−1(4x) +
1

8
ln (1 + 16x2) + c

(d) 2x tan−1(4x)− 7

8
ln (1 + 16x2) + c

(e) x tan−1(4x)− 1

8
ln (1 + 16x2) + c

8. The series

∞∑
n=1

3
√
n√

n3 + 4n+ 3

(a) converges by comparing with
∞∑
n=1

1

n1/6

(b) diverges by comparing with
∞∑
n=1

1

n7/6

(c) diverges by comparing with
∞∑
n=1

1

n1/6

(d) diverges by limit comparison test

(e) converges by comparing with
∞∑
n=1

1

n7/6
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9. The series

∞∑
n=2

2

n2 − 1

is

(a) convergent and its sum is
5

2

(b) convergent and its sum is
9

2

(c) convergent and its sum is
3

2

(d) convergent and its sum is
7

2
(e) divergent

10. Let an =
(−1)nn3

n3 + 2n2 + 1
, then lim

n→∞
an

(a) converges to 1

(b) converges to 0

(c) converges to −1

(d) converges to 2

(e) does not exist
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11. The series
∞∑
n=1

n2e−n3

is

(a) convergent to
1

3e
(b) convergent by integral test

(c) a series where the integral test is not applicable

(d) divergent by integral test

(e) divergent by divergence test

12. The area of the surface obtained by rotating the curve y =
√
1 + ex, 0 ≤ x ≤ 1

about x-axis is equal to

(a) π(e+ 1)

(b) 3π(e+ 1)

(c) 2π(e− 1)

(d) π(e− 1)

(e) 2π(e+ 4)



213, Math 102, Final Exam Page 7 of 14 CODE01

13. The series
∞∑
n=1

en

3n−1
is

(a) convergent with sum =
3e

3 + e
(b) divergent

(c) convergent with sum =
e

3− e

(d) convergent with sum =
3e

3− e

(e) convergent with sum =
e

3− 2e

14. The length of the curve f(x) = 3 +
1

2
cosh 2x over [0, 1] is equal to

(a) sinh 3

(b) sinh 2

(c)
1

3
sinh 3

(d)
1

2
sinh 4

(e)
1

2
sinh 2
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15. The power series representation for the function f(x) =
x4

(1 + x)2
is

(a)
∞∑
n=2

(−1)n nxn+2, |x| < 1

(b)
∞∑
n=1

(−1)n+1 nxn+3, |x| < 1

(c)
∞∑
n=1

(−1)n nxn+4, |x| < 1

(d)
∞∑
n=1

(−1)n (n+ 1)xn+2, |x| < 1

(e)
∞∑
n=1

(−1)n+1 (n+ 2)xn, |x| < 1

16. Using the Integral Test Remainder Estimate for the series
∞∑
n=1

1

n2
, we find that the

smallest number of terms need to be added such that |error| < 10−2 is

(a) 97

(b) 99

(c) 103

(d) 101

(e) 105
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17. The series

∞∑
n=1

(tan−1 n)n

(a) converges by the ratio test

(b) diverges by the root test

(c) a series where the root test is inconclusive

(d) converges by the root test

(e) a series where the ratio test is inconclusive

18. The series
∞∑
n=1

(2n)!

(n!)2

(a) converges conditionally

(b) converges by integral test

(c) converges by the root test

(d) converges by the ratio test

(e) diverges by the ratio test
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19. The area of the region in the first quadrant enclosed by the curves y = x, y =
1

x

and y =
1

4
x is equal to

(a) ln 5

(b) ln 2

(c) ln 6

(d) ln 4

(e) ln 3

20. The interval of convergence of the series

∞∑
n=0

(x− 2)n

n2 + 1

is

(a) (−∞,∞)

(b) (1, 3)

(c) [1, 3]

(d) [1, 3)

(e) (1, 3]
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21. The series
∞∑
n=1

(−1)n√
n

is

(a) a convergent geometric series

(b) a divergent p-series

(c) a convergent p-series

(d) a convergent alternating series

(e) a divergent geometric series

22. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line x = 2 the region bounded by y = x− x2 and y = 0 is equal to

(a)
π

6

(b)
π

4

(c)
π

3

(d)
π

2

(e)
π

5
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23.

∫ 1

0

dx

1 + x6
=

(a)
∞∑
n=0

(−1)n

6n+ 2

(b)
∞∑
n=1

(−1)n

6n+ 2

(c)
∞∑
n=1

1

6n+ 2

(d)
∞∑
n=0

1

6n+ 2

(e)
∞∑
n=0

(−1)n

6n+ 1

24. Estimating the area under the graph of f(x) = 1 + x2 from x = −1 to x = 2 using
three rectangles and right points is equal to

(a) 12

(b) 8

(c) 10

(d) 14

(e) 16
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25. The Maclaurin series for f(x) = x cos

(
x2

2

)
is

(a)
∞∑
n=0

(−1)n

22n(2n)!
x4n+1, R = ∞

(b)
∞∑
n=0

(−1)n

22n
x4n+1, R = ∞

(c)
∞∑
n=0

(−1)n

42n(2n)!
x4n+2, R = ∞

(d)
∞∑
n=0

(−1)n

(2n)!
x4n+1, R = ∞

(e)
∞∑
n=0

(−1)n

42n(2n)!
x4n+1, R = ∞

26. The first three nonzero terms of the Maclaurin series for the function
f(x) = (1− x)1/4 are

(a) 1− 1

4
x− 3

32
x2

(b) 1 +
1

4
x− 3

32
x2

(c) 1 +
1

4
x− 3

16
x2

(d) 1− 1

4
x− 3

16
x2

(e) 1− 1

4
x+

3

32
x2
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27. − ln 2 + (ln 2)2

2! − (ln 2)3

3! + . . . =

(a) −2

(b)
1

2
(c) 2

(d)
1

4

(e) −1

2

28. The Taylor series for f(x) = e2x centered at a = 3 is given by

(a)
∞∑
n=0

2ne6

n!
(x− 3)n, R = ∞

(b)
∞∑
n=0

2ne6(x− 3)n, R = ∞

(c)
∞∑
n=0

e6

n!
(x− 3)n, R = ∞

(d)
∞∑
n=0

2n

n!
(x− 3)n, R = ∞

(e)
∞∑
n=0

2n(x− 3)n, R = ∞
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1.

∫
tan−1(4x) =

(a) 2x tan−1(4x)− 7

8
ln (1 + 16x2) + c

(b) x tan−1(4x)− 1

8
ln (1 + 16x2) + c

(c) 2 tan−1(4x)− 1

8
ln (1 + 16x2) + c

(d) 3x tan−1(4x) +
7

8
ln (1 + 16x2) + c

(e) 3 tan−1(4x) +
1

8
ln (1 + 16x2) + c

2.

∫
cos5 x√
sinx

dx =

(a)
√
sinx− 1

5
sin4/5 x+

2

9
sin9/2 x+ c

(b) 2
√
sinx+ sin5/2 x+

1

9
sin9/2 x+ c

(c) 2
√
sinx− 4

5
sin5/2 x+

2

9
sin9/2 x+ c

(d) 4
√
sinx− 1

5
sin4/5 x− 2

9
sin9/2 x+ c

(e)
√
sinx+

4

5
sin5/2 x+ sin9/2 x+ c
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3.

∫
x3 + 4

x2 + 4
dx =

(a)
1

2
x2 − 2 ln(x2 + 4) + 2 tan−1

(x
2

)
+ c

(b) x2 − 2 ln(x2 + 4)− tan−1
(x
2

)
+ c

(c) 3x2 + 2 ln(x2 + 4) + 2 tan−1
(x
2

)
+ c

(d)
1

2
x2 − 2 ln(x2 + 4)− 4 tan−1

(x
2

)
+ c

(e) 4x2 − 2 ln(x2 + 4)− 2 tan−1
(x
2

)
+ c

4. The average value of f(x) = sec2
(x
2

)
over

[
0,

π

2

]
is equal to

(a)
8

π

(b)
6

π

(c)
12

π

(d)
4

π

(e)
10

π
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5. The improper integral

∫ 3

−2

1

x4
dx is

(a) convergent to
1

2
(b) divergent

(c) convergent to
1

4

(d) convergent to −1

2

(e) convergent to −1

4

6. If y =

∫ 3x

2x

u2 − 1

u2 + 1
du, then

dy

dx
at x = 0 is equal to

(a) −2

(b) −3

(c) 2

(d) −1

(e) 4
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7.

∫
x
√

1− x4 dx =

(a)
1

4
sin−1(x2) +

1

4
x2
√

1− x4 + c

(b)
1

8
sin−1(x2) +

1

4
x2
√

1− x4 + c

(c)
1

8
sin−1(x2) +

1

8
x2
√

1− x4 + c

(d)
1

4
sin−1(x2)− 1

8
x2
√

1− x4 + c

(e)
1

4
sin−1(x2) +

1

8
x2
√

1− x4 + c

8. The area of the surface obtained by rotating the curve y =
√
1 + ex, 0 ≤ x ≤ 1

about x-axis is equal to

(a) 2π(e+ 4)

(b) 2π(e− 1)

(c) π(e− 1)

(d) π(e+ 1)

(e) 3π(e+ 1)
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9. The series

∞∑
n=1

3
√
n√

n3 + 4n+ 3

(a) diverges by comparing with
∞∑
n=1

1

n1/6

(b) converges by comparing with
∞∑
n=1

1

n1/6

(c) diverges by comparing with
∞∑
n=1

1

n7/6

(d) converges by comparing with
∞∑
n=1

1

n7/6

(e) diverges by limit comparison test

10. The series

∞∑
n=2

2

n2 − 1

is

(a) convergent and its sum is
5

2

(b) convergent and its sum is
9

2

(c) convergent and its sum is
3

2
(d) divergent

(e) convergent and its sum is
7

2
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11. Let an =
(−1)nn3

n3 + 2n2 + 1
, then lim

n→∞
an

(a) converges to 2

(b) does not exist

(c) converges to −1

(d) converges to 0

(e) converges to 1

12. The series
∞∑
n=1

n2e−n3

is

(a) divergent by integral test

(b) a series where the integral test is not applicable

(c) convergent by integral test

(d) convergent to
1

3e
(e) divergent by divergence test
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13. The series
∞∑
n=1

en

3n−1
is

(a) convergent with sum =
3e

3− e

(b) convergent with sum =
e

3− 2e
(c) divergent

(d) convergent with sum =
e

3− e

(e) convergent with sum =
3e

3 + e

14. The length of the curve f(x) = 3 +
1

2
cosh 2x over [0, 1] is equal to

(a)
1

3
sinh 3

(b) sinh 3

(c)
1

2
sinh 2

(d) sinh 2

(e)
1

2
sinh 4
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15. The series
∞∑
n=1

(−1)n√
n

is

(a) a convergent p-series

(b) a convergent geometric series

(c) a divergent geometric series

(d) a convergent alternating series

(e) a divergent p-series

16. The series
∞∑
n=1

(2n)!

(n!)2

(a) converges conditionally

(b) diverges by the ratio test

(c) converges by the ratio test

(d) converges by the root test

(e) converges by integral test
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17. Using the Integral Test Remainder Estimate for the series
∞∑
n=1

1

n2
, we find that the

smallest number of terms need to be added such that |error| < 10−2 is

(a) 105

(b) 97

(c) 99

(d) 103

(e) 101

18. The series

∞∑
n=1

(tan−1 n)n

(a) a series where the ratio test is inconclusive

(b) a series where the root test is inconclusive

(c) converges by the root test

(d) diverges by the root test

(e) converges by the ratio test
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19. The power series representation for the function f(x) =
x4

(1 + x)2
is

(a)
∞∑
n=1

(−1)n+1 (n+ 2)xn, |x| < 1

(b)
∞∑
n=2

(−1)n nxn+2, |x| < 1

(c)
∞∑
n=1

(−1)n (n+ 1)xn+2, |x| < 1

(d)
∞∑
n=1

(−1)n+1 nxn+3, |x| < 1

(e)
∞∑
n=1

(−1)n nxn+4, |x| < 1

20. The area of the region in the first quadrant enclosed by the curves y = x, y =
1

x

and y =
1

4
x is equal to

(a) ln 6

(b) ln 4

(c) ln 2

(d) ln 3

(e) ln 5
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21. The interval of convergence of the series

∞∑
n=0

(x− 2)n

n2 + 1

is

(a) (1, 3)

(b) [1, 3)

(c) [1, 3]

(d) (1, 3]

(e) (−∞,∞)

22. The Taylor series for f(x) = e2x centered at a = 3 is given by

(a)
∞∑
n=0

2n

n!
(x− 3)n, R = ∞

(b)
∞∑
n=0

2ne6(x− 3)n, R = ∞

(c)
∞∑
n=0

e6

n!
(x− 3)n, R = ∞

(d)
∞∑
n=0

2n(x− 3)n, R = ∞

(e)
∞∑
n=0

2ne6

n!
(x− 3)n, R = ∞
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23. The Maclaurin series for f(x) = x cos

(
x2

2

)
is

(a)
∞∑
n=0

(−1)n

22n(2n)!
x4n+1, R = ∞

(b)
∞∑
n=0

(−1)n

(2n)!
x4n+1, R = ∞

(c)
∞∑
n=0

(−1)n

22n
x4n+1, R = ∞

(d)
∞∑
n=0

(−1)n

42n(2n)!
x4n+2, R = ∞

(e)
∞∑
n=0

(−1)n

42n(2n)!
x4n+1, R = ∞

24. Estimating the area under the graph of f(x) = 1 + x2 from x = −1 to x = 2 using
three rectangles and right points is equal to

(a) 8

(b) 16

(c) 14

(d) 10

(e) 12
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25. The first three nonzero terms of the Maclaurin series for the function
f(x) = (1− x)1/4 are

(a) 1− 1

4
x− 3

32
x2

(b) 1− 1

4
x− 3

16
x2

(c) 1− 1

4
x+

3

32
x2

(d) 1 +
1

4
x− 3

32
x2

(e) 1 +
1

4
x− 3

16
x2

26. − ln 2 + (ln 2)2

2! − (ln 2)3

3! + . . . =

(a) 2

(b) −2

(c) −1

2

(d)
1

4

(e)
1

2
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27.

∫ 1

0

dx

1 + x6
=

(a)
∞∑
n=0

1

6n+ 2

(b)
∞∑
n=1

1

6n+ 2

(c)
∞∑
n=0

(−1)n

6n+ 2

(d)
∞∑
n=1

(−1)n

6n+ 2

(e)
∞∑
n=0

(−1)n

6n+ 1

28. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line x = 2 the region bounded by y = x− x2 and y = 0 is equal to

(a)
π

6

(b)
π

3

(c)
π

5

(d)
π

2

(e)
π

4
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1. The average value of f(x) = sec2
(x
2

)
over

[
0,

π

2

]
is equal to

(a)
12

π

(b)
6

π

(c)
8

π

(d)
4

π

(e)
10

π

2. If y =

∫ 3x

2x

u2 − 1

u2 + 1
du, then

dy

dx
at x = 0 is equal to

(a) 4

(b) −3

(c) −2

(d) 2

(e) −1
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3. The improper integral

∫ 3

−2

1

x4
dx is

(a) divergent

(b) convergent to
1

2

(c) convergent to
1

4

(d) convergent to −1

4

(e) convergent to −1

2

4.

∫
x
√
1− x4 dx =

(a)
1

8
sin−1(x2) +

1

4
x2
√

1− x4 + c

(b)
1

4
sin−1(x2) +

1

4
x2
√

1− x4 + c

(c)
1

8
sin−1(x2) +

1

8
x2
√

1− x4 + c

(d)
1

4
sin−1(x2)− 1

8
x2
√

1− x4 + c

(e)
1

4
sin−1(x2) +

1

8
x2
√

1− x4 + c
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5.

∫
x3 + 4

x2 + 4
dx =

(a)
1

2
x2 − 2 ln(x2 + 4) + 2 tan−1

(x
2

)
+ c

(b) x2 − 2 ln(x2 + 4)− tan−1
(x
2

)
+ c

(c) 4x2 − 2 ln(x2 + 4)− 2 tan−1
(x
2

)
+ c

(d)
1

2
x2 − 2 ln(x2 + 4)− 4 tan−1

(x
2

)
+ c

(e) 3x2 + 2 ln(x2 + 4) + 2 tan−1
(x
2

)
+ c

6.

∫
cos5 x√
sinx

dx =

(a) 2
√
sinx+ sin5/2 x+

1

9
sin9/2 x+ c

(b)
√
sinx+

4

5
sin5/2 x+ sin9/2 x+ c

(c)
√
sinx− 1

5
sin4/5 x+

2

9
sin9/2 x+ c

(d) 4
√
sinx− 1

5
sin4/5 x− 2

9
sin9/2 x+ c

(e) 2
√
sinx− 4

5
sin5/2 x+

2

9
sin9/2 x+ c
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7.

∫
tan−1(4x) =

(a) 2 tan−1(4x)− 1

8
ln (1 + 16x2) + c

(b) x tan−1(4x)− 1

8
ln (1 + 16x2) + c

(c) 2x tan−1(4x)− 7

8
ln (1 + 16x2) + c

(d) 3x tan−1(4x) +
7

8
ln (1 + 16x2) + c

(e) 3 tan−1(4x) +
1

8
ln (1 + 16x2) + c

8. The area of the surface obtained by rotating the curve y =
√
1 + ex, 0 ≤ x ≤ 1

about x-axis is equal to

(a) 2π(e− 1)

(b) 2π(e+ 4)

(c) π(e+ 1)

(d) π(e− 1)

(e) 3π(e+ 1)
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9. The series

∞∑
n=1

3
√
n√

n3 + 4n+ 3

(a) converges by comparing with
∞∑
n=1

1

n7/6

(b) diverges by comparing with
∞∑
n=1

1

n7/6

(c) diverges by comparing with
∞∑
n=1

1

n1/6

(d) diverges by limit comparison test

(e) converges by comparing with
∞∑
n=1

1

n1/6

10. The series
∞∑
n=1

n2e−n3

is

(a) convergent to
1

3e
(b) a series where the integral test is not applicable

(c) convergent by integral test

(d) divergent by integral test

(e) divergent by divergence test



213, Math 102, Final Exam Page 6 of 14 CODE03

11. The series
∞∑
n=1

en

3n−1
is

(a) convergent with sum =
3e

3− e

(b) convergent with sum =
3e

3 + e
(c) divergent

(d) convergent with sum =
e

3− 2e

(e) convergent with sum =
e

3− e

12. The length of the curve f(x) = 3 +
1

2
cosh 2x over [0, 1] is equal to

(a)
1

2
sinh 4

(b)
1

2
sinh 2

(c) sinh 2

(d)
1

3
sinh 3

(e) sinh 3
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13. The series

∞∑
n=2

2

n2 − 1

is

(a) convergent and its sum is
3

2
(b) divergent

(c) convergent and its sum is
7

2

(d) convergent and its sum is
9

2

(e) convergent and its sum is
5

2

14. Let an =
(−1)nn3

n3 + 2n2 + 1
, then lim

n→∞
an

(a) converges to −1

(b) converges to 2

(c) converges to 0

(d) converges to 1

(e) does not exist



213, Math 102, Final Exam Page 8 of 14 CODE03

15. The area of the region in the first quadrant enclosed by the curves y = x, y =
1

x

and y =
1

4
x is equal to

(a) ln 2

(b) ln 3

(c) ln 6

(d) ln 5

(e) ln 4

16. The series
∞∑
n=1

(2n)!

(n!)2

(a) diverges by the ratio test

(b) converges conditionally

(c) converges by the root test

(d) converges by integral test

(e) converges by the ratio test
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17. The series
∞∑
n=1

(−1)n√
n

is

(a) a convergent alternating series

(b) a divergent geometric series

(c) a divergent p-series

(d) a convergent geometric series

(e) a convergent p-series

18. The interval of convergence of the series

∞∑
n=0

(x− 2)n

n2 + 1

is

(a) (−∞,∞)

(b) [1, 3)

(c) (1, 3]

(d) (1, 3)

(e) [1, 3]
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19. The series

∞∑
n=1

(tan−1 n)n

(a) converges by the root test

(b) diverges by the root test

(c) a series where the ratio test is inconclusive

(d) converges by the ratio test

(e) a series where the root test is inconclusive

20. Using the Integral Test Remainder Estimate for the series
∞∑
n=1

1

n2
, we find that the

smallest number of terms need to be added such that |error| < 10−2 is

(a) 99

(b) 97

(c) 105

(d) 101

(e) 103



213, Math 102, Final Exam Page 11 of 14 CODE03

21. The power series representation for the function f(x) =
x4

(1 + x)2
is

(a)
∞∑
n=2

(−1)n nxn+2, |x| < 1

(b)
∞∑
n=1

(−1)n nxn+4, |x| < 1

(c)
∞∑
n=1

(−1)n+1 nxn+3, |x| < 1

(d)
∞∑
n=1

(−1)n (n+ 1)xn+2, |x| < 1

(e)
∞∑
n=1

(−1)n+1 (n+ 2)xn, |x| < 1

22.

∫ 1

0

dx

1 + x6
=

(a)
∞∑
n=0

(−1)n

6n+ 2

(b)
∞∑
n=1

(−1)n

6n+ 2

(c)
∞∑
n=1

1

6n+ 2

(d)
∞∑
n=0

(−1)n

6n+ 1

(e)
∞∑
n=0

1

6n+ 2
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23. Estimating the area under the graph of f(x) = 1 + x2 from x = −1 to x = 2 using
three rectangles and right points is equal to

(a) 10

(b) 12

(c) 8

(d) 14

(e) 16

24. − ln 2 + (ln 2)2

2! − (ln 2)3

3! + . . . =

(a)
1

4
(b) 2

(c)
1

2
(d) −2

(e) −1

2
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25. The Maclaurin series for f(x) = x cos

(
x2

2

)
is

(a)
∞∑
n=0

(−1)n

(2n)!
x4n+1, R = ∞

(b)
∞∑
n=0

(−1)n

22n
x4n+1, R = ∞

(c)
∞∑
n=0

(−1)n

22n(2n)!
x4n+1, R = ∞

(d)
∞∑
n=0

(−1)n

42n(2n)!
x4n+1, R = ∞

(e)
∞∑
n=0

(−1)n

42n(2n)!
x4n+2, R = ∞

26. The first three nonzero terms of the Maclaurin series for the function
f(x) = (1− x)1/4 are

(a) 1− 1

4
x+

3

32
x2

(b) 1− 1

4
x− 3

32
x2

(c) 1 +
1

4
x− 3

32
x2

(d) 1 +
1

4
x− 3

16
x2

(e) 1− 1

4
x− 3

16
x2
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27. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line x = 2 the region bounded by y = x− x2 and y = 0 is equal to

(a)
π

5

(b)
π

4

(c)
π

2

(d)
π

3

(e)
π

6

28. The Taylor series for f(x) = e2x centered at a = 3 is given by

(a)
∞∑
n=0

2ne6(x− 3)n, R = ∞

(b)
∞∑
n=0

e6

n!
(x− 3)n, R = ∞

(c)
∞∑
n=0

2ne6

n!
(x− 3)n, R = ∞

(d)
∞∑
n=0

2n(x− 3)n, R = ∞

(e)
∞∑
n=0

2n

n!
(x− 3)n, R = ∞
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1. The average value of f(x) = sec2
(x
2

)
over

[
0,

π

2

]
is equal to

(a)
10

π

(b)
8

π

(c)
6

π

(d)
4

π

(e)
12

π

2. The improper integral

∫ 3

−2

1

x4
dx is

(a) divergent

(b) convergent to
1

4

(c) convergent to −1

4

(d) convergent to −1

2

(e) convergent to
1

2
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3. If y =

∫ 3x

2x

u2 − 1

u2 + 1
du, then

dy

dx
at x = 0 is equal to

(a) −3

(b) −1

(c) −2

(d) 2

(e) 4

4.

∫
x
√

1− x4 dx =

(a)
1

8
sin−1(x2) +

1

8
x2
√

1− x4 + c

(b)
1

8
sin−1(x2) +

1

4
x2
√

1− x4 + c

(c)
1

4
sin−1(x2) +

1

4
x2
√

1− x4 + c

(d)
1

4
sin−1(x2)− 1

8
x2
√

1− x4 + c

(e)
1

4
sin−1(x2) +

1

8
x2
√

1− x4 + c
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5.

∫
cos5 x√
sinx

dx =

(a)
√
sinx+

4

5
sin5/2 x+ sin9/2 x+ c

(b) 2
√
sinx+ sin5/2 x+

1

9
sin9/2 x+ c

(c) 2
√
sinx− 4

5
sin5/2 x+

2

9
sin9/2 x+ c

(d) 4
√
sinx− 1

5
sin4/5 x− 2

9
sin9/2 x+ c

(e)
√
sinx− 1

5
sin4/5 x+

2

9
sin9/2 x+ c

6.

∫
tan−1(4x) =

(a) 2 tan−1(4x)− 1

8
ln (1 + 16x2) + c

(b) x tan−1(4x)− 1

8
ln (1 + 16x2) + c

(c) 2x tan−1(4x)− 7

8
ln (1 + 16x2) + c

(d) 3 tan−1(4x) +
1

8
ln (1 + 16x2) + c

(e) 3x tan−1(4x) +
7

8
ln (1 + 16x2) + c
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7.

∫
x3 + 4

x2 + 4
dx =

(a)
1

2
x2 − 2 ln(x2 + 4) + 2 tan−1

(x
2

)
+ c

(b)
1

2
x2 − 2 ln(x2 + 4)− 4 tan−1

(x
2

)
+ c

(c) 4x2 − 2 ln(x2 + 4)− 2 tan−1
(x
2

)
+ c

(d) x2 − 2 ln(x2 + 4)− tan−1
(x
2

)
+ c

(e) 3x2 + 2 ln(x2 + 4) + 2 tan−1
(x
2

)
+ c

8. The series

∞∑
n=2

2

n2 − 1

is

(a) convergent and its sum is
7

2

(b) convergent and its sum is
3

2
(c) divergent

(d) convergent and its sum is
5

2

(e) convergent and its sum is
9

2
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9. The series
∞∑
n=1

en

3n−1
is

(a) convergent with sum =
e

3− e
(b) divergent

(c) convergent with sum =
3e

3− e

(d) convergent with sum =
3e

3 + e

(e) convergent with sum =
e

3− 2e

10. Let an =
(−1)nn3

n3 + 2n2 + 1
, then lim

n→∞
an

(a) converges to 1

(b) converges to −1

(c) does not exist

(d) converges to 2

(e) converges to 0
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11. The series
∞∑
n=1

n2e−n3

is

(a) divergent by integral test

(b) convergent to
1

3e
(c) convergent by integral test

(d) divergent by divergence test

(e) a series where the integral test is not applicable

12. The length of the curve f(x) = 3 +
1

2
cosh 2x over [0, 1] is equal to

(a) sinh 3

(b)
1

3
sinh 3

(c)
1

2
sinh 4

(d) sinh 2

(e)
1

2
sinh 2
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13. The series

∞∑
n=1

3
√
n√

n3 + 4n+ 3

(a) diverges by comparing with
∞∑
n=1

1

n7/6

(b) diverges by comparing with
∞∑
n=1

1

n1/6

(c) converges by comparing with
∞∑
n=1

1

n1/6

(d) converges by comparing with
∞∑
n=1

1

n7/6

(e) diverges by limit comparison test

14. The area of the surface obtained by rotating the curve y =
√
1 + ex, 0 ≤ x ≤ 1

about x-axis is equal to

(a) 2π(e+ 4)

(b) π(e+ 1)

(c) 2π(e− 1)

(d) 3π(e+ 1)

(e) π(e− 1)
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15. Using the Integral Test Remainder Estimate for the series
∞∑
n=1

1

n2
, we find that the

smallest number of terms need to be added such that |error| < 10−2 is

(a) 105

(b) 101

(c) 99

(d) 103

(e) 97

16. The series
∞∑
n=1

(2n)!

(n!)2

(a) converges by the ratio test

(b) converges by the root test

(c) diverges by the ratio test

(d) converges by integral test

(e) converges conditionally
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17. The power series representation for the function f(x) =
x4

(1 + x)2
is

(a)
∞∑
n=1

(−1)n+1 nxn+3, |x| < 1

(b)
∞∑
n=1

(−1)n+1 (n+ 2)xn, |x| < 1

(c)
∞∑
n=1

(−1)n nxn+4, |x| < 1

(d)
∞∑
n=2

(−1)n nxn+2, |x| < 1

(e)
∞∑
n=1

(−1)n (n+ 1)xn+2, |x| < 1

18. The series
∞∑
n=1

(−1)n√
n

is

(a) a divergent p-series

(b) a convergent alternating series

(c) a convergent p-series

(d) a convergent geometric series

(e) a divergent geometric series
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19. The series

∞∑
n=1

(tan−1 n)n

(a) converges by the ratio test

(b) a series where the ratio test is inconclusive

(c) a series where the root test is inconclusive

(d) converges by the root test

(e) diverges by the root test

20. The area of the region in the first quadrant enclosed by the curves y = x, y =
1

x

and y =
1

4
x is equal to

(a) ln 6

(b) ln 3

(c) ln 5

(d) ln 4

(e) ln 2
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21. The interval of convergence of the series

∞∑
n=0

(x− 2)n

n2 + 1

is

(a) (−∞,∞)

(b) [1, 3]

(c) (1, 3]

(d) (1, 3)

(e) [1, 3)

22. The Maclaurin series for f(x) = x cos

(
x2

2

)
is

(a)
∞∑
n=0

(−1)n

42n(2n)!
x4n+1, R = ∞

(b)
∞∑
n=0

(−1)n

22n
x4n+1, R = ∞

(c)
∞∑
n=0

(−1)n

42n(2n)!
x4n+2, R = ∞

(d)
∞∑
n=0

(−1)n

(2n)!
x4n+1, R = ∞

(e)
∞∑
n=0

(−1)n

22n(2n)!
x4n+1, R = ∞
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23. − ln 2 + (ln 2)2

2! − (ln 2)3

3! + . . . =

(a) 2

(b) −2

(c)
1

2

(d)
1

4

(e) −1

2

24.

∫ 1

0

dx

1 + x6
=

(a)
∞∑
n=1

1

6n+ 2

(b)
∞∑
n=0

1

6n+ 2

(c)
∞∑
n=0

(−1)n

6n+ 2

(d)
∞∑
n=1

(−1)n

6n+ 2

(e)
∞∑
n=0

(−1)n

6n+ 1
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25. Estimating the area under the graph of f(x) = 1 + x2 from x = −1 to x = 2 using
three rectangles and right points is equal to

(a) 8

(b) 12

(c) 10

(d) 16

(e) 14

26. Using the method of cylindrical shell, the volume of the solid generated by revolving
about the line x = 2 the region bounded by y = x− x2 and y = 0 is equal to

(a)
π

2

(b)
π

5

(c)
π

4

(d)
π

6

(e)
π

3
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27. The Taylor series for f(x) = e2x centered at a = 3 is given by

(a)
∞∑
n=0

2n

n!
(x− 3)n, R = ∞

(b)
∞∑
n=0

2ne6(x− 3)n, R = ∞

(c)
∞∑
n=0

e6

n!
(x− 3)n, R = ∞

(d)
∞∑
n=0

2ne6

n!
(x− 3)n, R = ∞

(e)
∞∑
n=0

2n(x− 3)n, R = ∞

28. The first three nonzero terms of the Maclaurin series for the function
f(x) = (1− x)1/4 are

(a) 1 +
1

4
x− 3

16
x2

(b) 1− 1

4
x+

3

32
x2

(c) 1− 1

4
x− 3

32
x2

(d) 1 +
1

4
x− 3

32
x2

(e) 1− 1

4
x− 3

16
x2
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Q MASTER CODE01 CODE02 CODE03 CODE04
1 A A 7 B 2 D 1 D 1

2 A D 1 C 6 E 3 A 7

3 A B 6 A 4 A 7 B 3

4 A B 4 D 1 B 5 C 5

5 A A 5 B 7 A 4 C 6

6 A C 3 D 3 E 6 B 2

7 A E 2 A 5 B 2 A 4

8 A E 14 D 9 C 9 B 11

9 A C 11 D 14 A 14 C 12

10 A E 10 C 11 C 13 C 10

11 A B 13 B 10 A 12 C 13

12 A A 9 C 13 B 8 E 8

13 A D 12 A 12 A 11 D 14

14 A E 8 C 8 E 10 B 9

15 A B 20 D 16 A 21 B 15

16 A D 15 B 17 A 17 C 17

17 A B 18 E 15 A 16 A 20

18 A E 17 D 18 E 19 B 16

19 A B 21 D 20 B 18 E 18

20 A C 19 C 21 D 15 E 21

21 A D 16 C 19 C 20 B 19

22 A D 22 E 26 D 23 E 28

23 A E 23 A 28 C 24 E 25

24 A B 24 A 24 E 25 E 23

25 A A 28 A 27 C 28 A 24

26 A A 27 C 25 B 27 A 22

27 A E 25 E 23 C 22 D 26

28 A A 26 D 22 C 26 C 27
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V A B C D E
1 6 7 3 5 7
2 6 4 7 8 3
3 8 5 7 3 5
4 5 7 7 3 6


