1. $\sin^2 x =$

(a)
$$\frac{2}{2!}x^2 - \frac{2^3}{4!}x^4 + \frac{2^5}{6!}x^6 - \frac{2^7}{8!}x^8 + \dots$$
 (correct)

(b)
$$x^2 + \frac{x^6}{(3!)^2} + \frac{x^{10}}{(5!)^2} + \frac{x^4}{(7!)^2} + \dots$$

(c)
$$\frac{1}{2} - \frac{2}{2!}x^2 + \frac{2^3}{4!}x^4 - \frac{2^5}{6!}x^6 + \dots$$

(d)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

(e)
$$1 - \left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}\right)^2$$

2.
$$\lim_{h \to 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^3} \, dt =$$

- (a) 3 _____(correct)
- (b) 0
- (c) $\sqrt{2}$
- (d) $\sqrt{3}$
- (e) 4

$$3. \int_0^3 |x^2 - 4| \, dx =$$

- (correct)
- (b) $\frac{29}{3}$ (c) 21
- (d) $\frac{17}{2}$
- (e) $\frac{16}{3}$

$$4. \int_0^1 \frac{dx}{(1+\sqrt{x})^4} =$$

- (a) $\frac{1}{6}$ (b) $\frac{2}{6}$ (correct)

- (c) $\frac{1}{16}$ (d) $\frac{3}{8}$ (e) $\frac{3}{16}$

- 5. The area of the region bounded by $y = x^2 \ln x$ and $y = 4 \ln x$ is equal to:
 - (a) $\frac{16}{3} \ln 2 \frac{29}{9}$ ______(correct)
 - (b) $\frac{16 \ln 2 3}{9}$
 - (c) $2 \ln 2 1$
 - (d) $\frac{8}{3}e \frac{1}{2}e$
 - (e) $\frac{e^2}{2} e \ln 2$

- 6. $\int_{1}^{9} \frac{2x^2 + x^2\sqrt{x} 1}{x^2} \, dx$
 - (a) $32\frac{4}{9}$ _____(correct)
 - (b) $29\frac{1}{4}$
 - (c) $34\frac{1}{2}$
 - (d) $36\frac{1}{4}$
 - (e) $33\frac{3}{4}$

7. Given that the base of a solid is the region bounded by the parabolas $y = x^2$ and $y = 2 - x^2$. The volume of the solid if the cross-sections perpendicular to the x-axis are squares with one side lying along the base is:

(a) $\frac{64}{15}$ _____(correct)

- (b) $\frac{8}{15}$
- (c) $\frac{32}{15}$
- (d) $\frac{28}{15}$
- (e) $\frac{16}{15}$

- 8. Using the method of cylindrical shell, the volume generated by rotating the region bounded by $y = x^3$, y = 0, x = 1 about y = 1 is equal to:
 - (a) $\frac{5\pi}{14}$ _____(correct)
 - (b) $\frac{10\pi}{14}$
 - (c) $\frac{13}{14}\pi$
 - (d) $\frac{16}{14}\pi$
 - (e) $\frac{3}{14}\pi$

- 9. The average value of $f(x) = \sin^2 x \cos^3 x$ over $[-\pi, \pi]$ is equal to:
 - (a) 0 _____(correct)
 - (b) $\frac{1}{2\pi}$
 - (c) $\frac{1}{\pi 15}$
 - (d) $\frac{1}{15}(\pi^3 \pi^5)$
 - (e) $\frac{\pi}{15}(\pi^5 \pi^3)$

 $10. \int \frac{1}{\sqrt{x} - \sqrt[3]{x}} \, dx =$

(Hint: Substitute $u = \sqrt[6]{x}$)

- (a) $2\sqrt{x} + 3\sqrt[3]{x} + 6\sqrt[6]{x} + 6\ln|\sqrt[6]{x} 1| + c$ _____(correct)
- (b) $\sqrt{x} \frac{3}{2}\sqrt[4]{x} + 3\ln|\sqrt[6]{x-1}| + c$
- (c) $\sqrt{x}\sqrt[6]{x-1} + 3\sqrt[4]{x} + \frac{1}{6}\ln|\sqrt[3]{x-1}| + c$
- (d) $6\sqrt[3]{x} + 6\ln|1 \sqrt[4]{x}| + c$
- (e) $\sqrt[4]{x} \frac{3}{2}\sqrt[3]{x} + 6 \ln \left| \sqrt[3]{x} \frac{1}{2} \right| + c$

- 11. The length of $y = \ln(1 x^2)$ over $\left[0, \frac{1}{2}\right]$ is
 - (a) $\ln 3 \frac{1}{2}$ _____(correct)
 - (b) 2 ln 3
 - (c) $\ln 3 \ln 2$
 - (d) $\frac{1}{2}\ln(1+e)$
 - (e) $\ln(e-1)$

12. The surface area that obtained when the curve $y = \sin(\pi x)$, $0 \le x \le 1$ is revolved about the x-axis is equal to:

(a)
$$2\sqrt{1+\pi^2} + \frac{2}{\pi}\ln(\pi + \sqrt{1+\pi^2})$$
 _____(correct)

(b)
$$\frac{4}{\pi}\sqrt{1+\pi^2} + \ln(\sqrt{1+\pi^2})$$

(c)
$$\frac{2}{\pi} \ln(\sqrt{\pi + \sqrt{1 + \pi^2}})$$

(d)
$$\frac{2}{\pi}\ln(\pi^2 + \sqrt{1+\pi})$$

(e)
$$\frac{1}{\pi} \ln(\pi + \sqrt{\pi^2 + \pi})$$

13.
$$\int \frac{dx}{\sqrt{e^x - 1}} =$$

- (a) $2 \tan^{-1}(\sqrt{e^x 1}) + c$ _____(correct)
- (b) $\frac{1}{2} \tan^{-1} \left(\frac{1}{2} x \right) + c$
- (c) $\frac{e}{2} \tan^{-1}(\sqrt{e^x} 1) + c$
- (d) $\frac{2}{e} \tan^{-1} \left(\frac{x}{2} \right) + c$
- (e) $\frac{2}{e} \tan^{-1}(\sqrt{e^x 1}) + c$

14.
$$\int_0^\infty x^2 e^{-x^2} \, dx =$$

- (a) $\frac{1}{2} \int_0^\infty e^{-x^2} dx$ _____(correct)
- (b) $2 \int_{0}^{\infty} xe^{-x^2} dx$
- (c) 0
- (d) $\int_{-\infty}^{\infty} x e^{-x^2} dx$
- (e) $\frac{1}{2} \int_0^\infty x e^{-x} \, dx$

15. A formula for the general term a_n of the sequence

$$\left\{\frac{3}{5}, \frac{-4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \ldots\right\}$$

is

(a)
$$(-1)^{n-1} \frac{n+2}{5^n}$$
, $n \ge 1$ ______(correct)

- (b) $(-1)^{n-1} \frac{n+2}{5^n}$, $n \ge 0$
- (c) $(-1)^n \frac{n+2}{5^n}$, n > 1
- (d) $(-1)^{n-1} \frac{n+3}{5^{n+1}}, n \ge 0$
- (e) $(-1)^n \frac{n+3}{5^n}$, $n \ge 0$

16. The sequence
$$a_n = \frac{\sin 2n}{1 + \sqrt{n}}$$

- (a) converges to 0 _____(correct)
- (b) converges to 1
- (c) converges to 2
- (d) diverges
- (e) converges to -1

17. The series
$$\sum_{n=1}^{\infty} \left(\frac{2}{e^n} + \frac{1}{2n(n+1)} \right)$$

- (a) converges and the sum is $\frac{3+e}{2e-2}$ ______(correct)
- (b) converges and the sum is $\frac{e}{e-1}$
- (c) converges and the sum is $\frac{1}{e-1}$
- (d) converges and the sum is $\frac{2}{e-1}$
- (e) converges and the sum is $\frac{e+1}{e-1}$

18. The series
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right)$$
 is

- (a) diverges _____(correct)
- (b) converges to 0
- (c) converges to $\frac{1}{2}$
- (d) converges to 2
- (e) converges to 3

- 19. The values of p for which the series $\sum_{n=1}^{\infty} n((1+(2n)^2)^{\frac{p}{2}})$ is convergent.
 - (a) p < -2 _____(correct)
 - (b) p < 1
 - (c) p < 0
 - (d) p < -1
 - (e) p > -2

- 20. The series $\sum_{i=1}^{\infty} \frac{\ln n}{n^2}$
 - (a) converges by integral test $\int_{1}^{\infty} \frac{\ln x}{x^2} dx = 1$ ______(correct)
 - (b) converges by integral test $\int_1^\infty \frac{\ln x}{x^2} dx = \frac{1}{2}$
 - (c) converges by integral test $\int_{1}^{\infty} \frac{\ln x}{x^2} dx = \frac{1}{8}$
 - (d) diverges by integral test $\int_1^\infty \frac{\ln x}{x^2} dx = \infty$
 - (e) diverges by integral test $\int_1^\infty \frac{\ln x}{x^2} dx = -\infty$

21. The series
$$\sum_{n=1}^{\infty} \frac{\operatorname{arc} \cot n}{n^{2 \cdot 1}}$$

- (a) converges by comparing with $\pi \sum_{n=1}^{\infty} \frac{1}{n^{2\cdot 1}}$ ______(correct)
- (b) converges by comparing with $\pi \sum_{n=1}^{\infty} \frac{1}{n^{0\cdot 1}}$
- (c) diverges by comparing with $\pi \sum_{n=1}^{\infty} \frac{1}{n^{2\cdot 1}}$
- (d) diverges by comparing with $\pi \sum_{n=1}^{\infty} \frac{1}{n^{0\cdot 1}}$
- (e) diverges by limit comparison test

22. The series
$$\sum_{n=1}^{\infty} a_n$$
 where $a_n = \frac{3n^3 + n}{\sqrt{4 + n^7}}$

- (a) diverges by limit comparison test with $\left(b_n = \frac{3}{n^{\frac{1}{2}}}\right)$ _____(correct)
- (b) diverges by limit comparison test with $\left(b_n = \frac{3}{n^{\frac{7}{2}}}\right)$
- (c) converges by limit comparison test with $\left(b_n = \frac{3}{n^{\frac{1}{2}}}\right)$
- (d) converges by limit comparison test with $\left(b_n = \frac{3}{n}\right)$
- (e) converges by limit comparison test with $\left(b_n = \frac{3}{n^{\frac{3}{2}}}\right)$

23. The series
$$\sum_{n=1}^{\infty} \frac{n \cos n\pi}{3^n}$$

- (a) a convergent alternating series _____(correct)
- (b) a convergent geometric series
- (c) a divergent p-series
- (d) a divergent geometric series
- (e) a divergent alternating series

24. The series
$$\sum_{n=1}^{\infty} \frac{10^n}{(n+1)3^{2n+1}}$$

- (a) diverges by the ratio test _____(correct)
- (b) converges by the ratio test
- (c) converge by the root test
- (d) converge by integral test
- (e) converge conditionally

- 25. The series $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$ converges for
 - (a) $x \in [1, 3]$ _____(correct)
 - (b) $x \in [1,3)$ only
 - (c) $x \in (1, 3]$ only
 - (d) all values of x
 - (e) $x \in [1, 4]$

- 26. The series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(n+1)! 2^{2n+1}}$ converges for
 - (a) all values of x _____(correct)
 - (b) $(0, \infty)$ only
 - (c) $(-\infty, 0)$ only
 - (d) (1, 3] only
 - (e) [1, 3] only

27. The power series representation for the function $\frac{x}{9+x^2}$ is

- (a) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{9^{n+1}}$ ______(correct)
- (b) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{9^n}$
- (c) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{9^n}$
- (d) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{9^{n+1}}$
- (e) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{3^{n+1}}$

28. The Maclaurin Series for $f(x) = \sinh x$ is

- (a) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$ (correct)
- (b) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$
- (c) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
- (d) $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
- (e) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n)!}$