1. A chemist must prepare 540 milliliters of a chemical solution. It is to be made up of 4 parts acid and 5 parts distilled water. If all parts are equal, then how much of water should be used?

(a) 300 milliliter	See Ex1: Page 46 (correct)
(b) 240 milliliter	
(c) 340 milliliter	let & be the number of
(d) 200 milliliter	each milititers in each
(e) 320 milliliter	cook milititers in each part then
	4x + 5x = 540
	x = 540 = 60
	9
	So amount of water = 5%
*	= 5(60)
	= 300

2. The monthly revenue of a certain company is given by $R = 800p - 7p^2$, where p is the price in dollars of the product the company manufactures. At what price will the revenue be \$10,000 if the price must be greater than \$50?

(a) 100 See Q#31, Page S1 (correct)

(b) 150

(c) 75

(d) 95

(e) 50

$$R = 800p - 7p^2$$

So, $800p - 7p^2 = 10,000$
 $7p^2 - 800p + 10,000 = 0$
 $P = 100 \text{ or } 14.28$

Since price is greater than \$50 so answer is $p = 100$

3. A company invests a total of \$30,000 of surplus funds at two annual rates of interest: 5% and $6\frac{3}{4}\%$. It wishes an annual yield of no less than $6\frac{1}{2}\%$. What is the least amount of money that the company must invest at the $6\frac{3}{4}\%$ rate?

(a) at least \$25714.29 (b) at least \$25174.29 (c) at most \$25714.29 (d) at least \$27541.20 (e) $\frac{3}{4}$ % $\chi + 5$ % (30000- χ) 7, 6 $\frac{1}{2}$ % (30000)

(d) at least \$27541.29

(e) at most \$27541.29

4. Suppose a company offers you a sales position with your choice of two methods of determining your yearly salary. The first method pays \$35,000 plus a bonus of 3% of your yearly sales. The second method pays a straight 5% commission on your sales. If the yearly sales is greater than \$1,750,000, then which of the following

See Q# 12, Page 58

x 7, 25714.29

- (a) Second method is better because early sales is greater than \$1,750,000 (correct)
- (b) First method is better because early sales is greater than \$1,750,000
- (c) Both methods are equal

statements is **True**?

- (d) First method is better because yearly sales less than \$1,750,000
- (e) Second method is better because yearly sales less than \$1,750,000

2/ x is yearly Sales

35000 + 3% x 5 5% x

x 7 1750000

- 5. A straight line has slope 3 and y-intercept (0,1). Then which of the following statement is **WRONG**.
 - (a) The point (-2, -1) lies on the line. See \bigcirc 62, Page 135 (correct)
 - (b) The point (-1, -2) lies on the line.
 - (c) The line is perpendicular to the line x + 3y 6 = 0
 - (d) The line intercepts the x-axis at $x = -\frac{1}{3}$
 - (e) The line is parallel to 3x y + 2 = 0

Put
$$(-2,-1)$$
 in Eq. ii

 $y = m \times + C$
 $y = m \times +$

- 6. The average daily cost, C, for a room at a city hospital has risen by \$59.82 per year for the years 1990 through 2000. If the average cost in 1996 was \$1128.50, what is an equation which describes the average cost during this decade, as a function of the number of years, T, since 1990?
 - (a) C = 59.82T + 769.58(b) C = 769.58T + 59.82(c) T = 59.82C + 769.58(d) T = 769.58C + 59.82(e) C = 59.82T + 1128.5 (6, 1/28.50) C = 59.82 + 1128.5 C = 59.82 + 769.58

7. In 2008, the stock in a computer hardware company traded for \$37 per share. However, the company was in trouble and the stock price dropped steadily, to \$8 per share in 2018. Then which of the following statement is **TRUE**?

See @# 63, Page # 135

- (a) The stock price dropped an average of \$2.90 per year _____(correct)
- (b) The stock price dropped an average of \$3.90 per year
- (c) The stock price increased an average of \$2.90 per year.
- (d) The stock price increased an average of \$3.90 per year.
- (e) The stock price remains constant an average of \$2.90 per year.

(2008, 37) (2018, 8) m = -2.9So Stock price dropped an average of 92.9 per year.

8. Which of the following lines are perpendicular

 $\ell_1: y=3$ \longrightarrow horizontal line] These are perpendicular. $\ell_2: x=-\frac{1}{3}$ \longrightarrow vertical line] These are perpendicular. $\ell_3: 3x+y=4$ $\ell_4: x+6y=4$

- (a) ℓ_1 and ℓ_2 See Q#47, page # 134 (correct)
- (b) ℓ_2 and ℓ_3
- (c) ℓ_3 and ℓ_4
- (d) ℓ_1 and ℓ_4
- (e) ℓ_2 and ℓ_4

9. Suppose consumers will demand 40 units of a product when the price is \$12.75 per unit and 25 units when the price is \$18.75 each. When 37 units are demanded, and assuming that the demand equation is linear, then price per unit is

See Q# 15, Page # 140 (a) \$13.95 (b) \$13.00 Given that (40, 12.75) (c) \$14.95 (25, 18.75) (d) \$15.95 (e) \$12.95 we need to Find P when 9=37 line passing through two points. P = -0-49 + 28-75 P= -0.4 (37) +28.75 = 13.95

10. A house purchased for \$255,000 is expected to double in value in 15 years. Then a linear equation that describes the house's value after t years is

See Q# 26, Page # 140 (correct) (a) 17000t + 255000

- (b) 15000t + 255000
- (c) 255000t + 17000
- (d) 15t + 255000
- (e) 255t + 155000

m = 255000 = 17000

So the required linear Equation is

(7000 t + 255000

- 11. What are the vertex and axis of symmetry of the parabola $y = -x^2 + 6x + 3$?
 - (a) vertex is (3,12); axis of symmetry is x=3 ______ See Fx 3, Page 199 (correct)
 - (b) vertex is (12,3); axis of symmetry is x=3
 - (c) vertex is (3, 12); axis of symmetry is y = 3
 - (d) vertex is (12,3); axis of symmetry is y=3
 - (e) vertex is (-3, 12); axis of symmetry is x = -3

The $ne-Coordinate of the vertex is <math>-\frac{b}{2a}$ $= -\frac{(b)}{2(-1)} = 3$

(3,12).

- 12. The demand function for an appliance company's line of washing machines is p = 300 - 5q, where p is the price (in dollars) per unit when q units are demanded (per week) by consumers. Find the level of production that will maximize the manufacturer's total revenue, and determine this revenue.
 - (a) 30 units; \$4500 maximum revenue ____
- See Q # 30, Page 147 (correct)
 - (b) 30 units; \$5500 maximum revenue
 - (c) 35 units; \$4500 maximum revenue
 - (d) 25 units; \$4500 maximum revenue
 - (e) 40 units; \$6500 maximum revenue

maximum revenue at 9=- 5

$$=\frac{-(300)}{2(-5)}=30$$

max. revenue is 8 = -5(30) +300(30)

13. Given the system of linear equations

$$\begin{cases} 2x - y = 1 \\ -x + ky = c, \end{cases}$$

where k and c are real constants. Which of the following statements is **True**?

See Ex 3, Page 152

- (a) For $k = \frac{1}{2}$, $c = -\frac{1}{2}$, system has infinitely many solutions _____(correct)
- (b) For $k = \frac{1}{2}$, $c = -\frac{1}{2}$, system has no solutions
- (c) For $k = \frac{1}{2}$, $c = -\frac{1}{2}$, system has unique solutions
- (d) For $k \neq \frac{1}{2}$, $c \neq -\frac{1}{2}$, system has infinitely many solutions

(e) For $k \neq \frac{1}{2}$, $c \neq -\frac{1}{2}$, system has no solutions

System will have infinitely many Solution of

will have infinitely

Solution if 2(2x-y)=1 2(-x+ky)=C -1+2k = 0 and 1+2c=0 -y+2ky=1+2c -y+2ky=1+2cevalue of k, where the following system -1+2k

14. The value of k, where the following system

$$\begin{cases} 3x + 2y = 2\\ 2x - ky = 0, \end{cases}$$

has no solution is

(a) $-\frac{4}{3}$

(b) $\frac{4}{3}$

- (c) 0
- (d) 2

See Ex 2. Page 152 (correct)

Eleminate x in the given System

System how no Subton 3(3x+2y) = 4So 4+3k=0 1k = -4/3 4y + 3ky = 4 (4+3k)y = 4

15. The number of solutions of the system

$$\begin{cases} x^{2} + y^{2} = 7 \\ x^{2} - y^{2} = 1, & -7 \quad \chi^{2} = 1 + y^{2} \end{cases} \text{ put in Eq. i.}$$
is
$$2y = 6$$
(a) Four $y = \pm \sqrt{3}$ See $Q \# P 11$, fage 160. (correct)
(b) Three
(c) Two
(d) One
(e) No solution
$$\chi = 2, \chi = -2 \qquad \chi = 2, -2$$

$$(2, \sqrt{3}) (-2, \sqrt{3}), (2, -\sqrt{3})$$

$$(-2, -\sqrt{3})$$

16. If one solution of the following system is x = 1, y = 1

$$\begin{cases} x - y^2 = 0 & \Rightarrow & x > y^2 \\ 3x + 2y - 5 = 0, \end{cases}$$

Then the other solution is

(a)
$$x = \frac{25}{9}, y = -\frac{5}{3}$$

(b) $x = \frac{9}{25}, y = -\frac{3}{5}$

(c) $x = \frac{49}{2}, y = -\frac{7}{2}$

(d) $x = 1, y = -1$

(e) $x = 0, y = 0$

See Q # 3, Page 160 (correct)

3 9 2 2 9 - 5 = 0

3 9 + 5 9 - 3 + 5 = 0

4 (3 9 + 5) - 1 (3 9 + 5) = 0

 $y = -\frac{5}{3}$

17. Let $p = \frac{8}{100}q + 50$ be the supply equation for a manufacturer's product, and suppose the demand equation is $p = -\frac{7}{100}q + 65$. Determine how the original equilibrium price will be affected if the company is given a government subsidy of \$0.75 per unit.

See Q#23, Page # 167

- (a) the original equilibrium price decreases by \$0.35
- (b) the original equilibrium price decreases by \$0.70
- (c) the original equilibrium price decreases by \$0.30
- (d) the original equilibrium price increases by \$0.35
- (e) the original equilibrium price increases by \$0.70

Be for Subsidy, Find original Equalibrim Price and quanty. $89+50 = -\frac{7}{100}9+65$

[9=100], [P=58] er Subsidy

18. The solution of the following system

$$\begin{cases} x + y + 7z = 0 \\ x - y - z = 0 \\ 2x - 3y - 6z = 0 \\ 3x + y + 13z = 0 \end{cases}$$

is

8 9+50-0.75 = -I 9+65

Price decreases by \$0.35

(a)
$$x = -3r$$
, $y = -4r$, $z = r$

(b)
$$x = 4r$$
, $y = -4r$, $z = r$

(c)
$$x = -4r$$
, $y = -3r$, $z = r$

(d)
$$x = -3r$$
, $y = r$, $z = -4r$

(e)
$$x = 3r, y = 4r, z = r$$

See 8 # 22, Page 277

$$\begin{bmatrix} 1 & 1 & 7 \\ 1 & -1 & -1 \\ 2 & -3 & -6 \\ 3 & 1 & 13 \\ \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 7 \\
1 & -1 & -1
\end{bmatrix}
\begin{array}{c}
R_{2} - R_{1} \\
R_{3} - 2R_{1} \\
0 & -2 & -8
\end{array}$$

$$\begin{bmatrix}
1 & -1 & -1 \\
2 & -3 & -6
\end{bmatrix}
\begin{array}{c}
R_{3} - 3R_{1} \\
0 & -5 & -20
\end{array}$$

$$\begin{bmatrix}
2 - 7 - 7 - 8 \\
0 & -2 & -8
\end{array}$$

$$\begin{bmatrix}
-\frac{1}{7} - \frac{1}{7} -$$

19. The shaded region represents the feasible region in the following diagram is

(a)
$$y < 6$$
, $x + y - 2 \ge 0$, $3x - 2y + 12 < 0$ _____(correct)

(b)
$$x < 6$$
, $3x + 5y - 4 > 0$, $4x - 2y + 9 \le 0$

(c)
$$y < 6$$
, $4x + 4y - y > 0$, $x - y + 2 \ge 0$

(d)
$$y < 6$$
, $3x + 2y - 8 \le 0$, $2x - 4y + 5 > 0$

(e)
$$y \le 6$$
, $4x + 5y - 5 < 0$, $x - 2y + 8 \ge 0$

20. Let x = A and y = B be the numbers of units of two different car models, and consider the following linear programming model:

Maximize P = 7x + 2y subject to

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ 2x + y \le 80 \\ 3x + y \le 50 \\ 5x + y \le 70, \quad \text{Then } A + B = \end{cases}$$

See Q #13 page #306

- (d) 50 A+B=30
- (e) 60

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	A	A 4	E 15	D 18	D 8
2	A	A 20	С 6	D 19	В
3	A	C s	C 20	В 10	В 19
4	A	D 2	C 5	C 20	D 20
5	A	A 15	В 2	E 2	С 6
6	A	D 19	C 19	В 12	E 2
7	A	C 14	C 8	C 8	C 12
8	A	A 1	Е 3	Е 3	В 18
9	A	D 12	E 7	В 4	A 14
10	A	C ,	C 4	В 13	С 3
11	A	D 11	В 18	D 16	C 10
12	A	D 16	E 17	В 17	A 17
13	A	D 17	A 11	A 1	E ,
14	A	A 3	C 1	D 6	E 16
15	A	C 18	D 12	E 9	D 5
16	A	D 13	D 10	D 14	A 4
17	A	D 5	A 13	E 7	A 15
18	A	D 7	A 16	В 15	D 11
19	A	C 6	A 14	D 5	E ,
20	A	D 10	C ,	C 11	D 13