Page 1 of 10

MASTER

1. The solution to the following linear programming problem Minimize

$$Z = 6x + 14y$$

subject to the constraints

$$14x + 7y \ge 43$$

$$3x + 7y \ge 21$$

$$-x + y \ge -5$$

$$x, y \ge 0$$

is

(a)
$$x = 2\left(1 + \frac{9}{5}t\right), y = \frac{1}{7}\left(15 - \frac{54}{5}t\right), 0 \le t \le 1$$
 (correct)
(b) $x = 2\left(\frac{9}{5} + t\right), y = \frac{1}{7}\left(\frac{54}{5} - 15t\right), 0 \le t \le 1$
(c) $x = \frac{1}{7}\left(\frac{54}{5} - 15t\right), y = \left(\frac{9}{5} + t\right), 0 \le t \le 1$
(d) $x = \left(15 - \frac{54}{5}t\right), y = \left(7t + \frac{9}{5}\right), 0 \le t \le 1$
(e) $x = 2(1 - t), y = \frac{1}{7}(15 - t), 0 \le t \le 1$

2. The solution to the following linear programming problem Maximize

$$Z = 2x + 4y$$

subject to the constraints

$$\begin{aligned} x - 4y &\leq -8\\ x + 2y &\leq 16\\ x, y &\geq 0 \end{aligned}$$

is

(a)
$$x = 8 - 8t$$
, $y = 4 + 4t$, $0 \le t \le 1$
(b) $x = 8 + 8t$, $y = 1 + t$, $0 \le t \le 1$
(c) $x = 1 + t$, $y = 1 - t$, $0 \le t \le 1$
(d) $x = 8 - t$, $y = 4 + t$, $0 \le t \le 1$
(e) $x = 8$, $y = 4$, or $x = 0$, $y = 8$

Example 1 Page 312

(correct)

RA. 7.3 RH1 3. If the simplex tableau for standard maximization problem is set as shown below

	x_1	x_2	s_1	s_2	s_3	R
s_1	0	1	2	-1	0	5
x_1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{35}{2}$
s_3	0	$\frac{5}{2}$	0	$\frac{3}{2}$	1	$\frac{129}{2}$
Z	0	$\frac{-3}{2}$	0	$\frac{5}{2}$	0	$\frac{175}{2}$

Example 1 Page # 312

(correct)

then Z has maximum value at $(x_1, x_2, s_1, s_2, s_3) =$

- (a) (15, 5, 0, 0, 52) _
- (b) (5, 15, 0, 0, 52)
- (c) (3, 1, 52, 0, 0)
- (d) (15, 0, 52, 0, 0)
- (e) (52, 0, 15, 0, 0)
- 4. Consider the following linear programming problem Maximize

$$Z = 2x_1 + x_2$$

subject to

 $-x_1 + x_2 \le 4$ $x_1 + x_2 \le 6$ $x_1, x_2 \ge 0$

If $x_1 = A$, and $x_2 = B$ then A + B =

Ex. 7.4

(a)	6	(correct)
(b)	4		
(c)	8		
(d)	9		
(e)	10		

MASTER

Exercise 7.8

(correct)

Q # 10

Exercise 7.8 Q # 14

5. If the last simplex tableau for a dual maximization problem is set as

	y_1	y_2	y_3	s_1	s_2	R
y_2	0	1	$\frac{-20}{9}$	$\frac{4}{9}$	$\frac{-1}{9}$	$\frac{2}{3}$
y_1	1	0	$\frac{13}{9}$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{2}{3}$
w	0	0	20	4	6	20

then the solution for **Primal minimization** problem is

- (a) $x_1 = 4, x_2 = 6$ _____ (b) $x_1 = \frac{2}{3}, x_2 = \frac{2}{3}$ (c) $x_1 = 20, x_2 = 4$ (d) $x_1 = 6, x_2 = 4$ (e) $x_1 = 4, x_2 = 20$
- 6. Consider the following linear programming problem minimize

$$Z = 2x_1 + x_2 + x_3$$

subject to

$$2x_1 - x_2 - x_3 \le 2 -x_1 - x_2 + 2x_3 \ge 4 x_1, x_2, x_3 \ge 0$$

In the initial-simplex tableau of **dual problem**, the entering and departing variables are respectively

(a)	y_2	and s_3	· · · · · · · · · · · · · · · · · · ·	_(correct)
(b)	y_2	and s_1		
(c)	y_1	and s_3		
(d)	y_1	and s_2		
(e)	U_2	and s_2		

MASTER

7. How many years will it take for money to triple at the effective rate of r?

(a)
$$\frac{\ln(3)}{\ln(1+r)}$$
(b)
$$\frac{\ln(1+r)}{\ln(3)}$$
(c)
$$\ln(3) \ln(1+r)$$
(d)
$$\ln(3) \ln(r)$$
(e)
$$\ln(3+r)$$
(correct)
(correct)
(correct)
(correct)

8. An investor has a choice of investing a sum of money at 8% compounded annually or at 7.8% compounded semiannually. Which of the following statement(s) is (are) **True**?

I. The investment at 8% compounded annually is better

II. The investment at 7.8% compounded semiannually is better

III. 7.8% gives high effective rate

IV. 8% gives high effective rate

(a) I and IV $_$

- (b) only I
- (c) only IV
- (d) only II
- (e) I and III

Exercise S.1

(correct)

9. A debt of \$3500 due in four years and \$5000 due in six years is to be repaid by a single payment of \$1500 now and three equal payments that are due each consecutive year from now. If the interest rate is 7% compounded annually, how much are each of the equal payments?

(a) \$1715.44	 Exercise S.2	(correct)
(b) \$1175.44	Q # 8	
(c) \$7115.44		
(d) \$5117.44		

(e) \$7551.44

10. Suppose that you can invest \$25000 in a business that guarantees you cash flow \$8000, \$10,000, \$14000 at the end of years 6,8 and 12 respectively. Assume an interest rate of 2.5% compounded annually. Then which of the following statement(s) is (are) **True**?

I. Net present value is positiveII. Net present value is negativeIII. Investment is profitableIV. Investment is not profitable

- (a) I and III
- (b) II and III
- (c) I and IV
- (d) III is only
- (e) I is only

Exercice 5.2 Q#19

(correct)

MASTER

(correct)

Exercice S.3 Q # 16

- 11. What approximate annual rate compounded continuously is equivalent to nominal rate of 6% compounded monthly.
 - (a) 5.99%
 - (b) 5.91%(c) 0.5%
 - (0) 0.070
 - (d) 5.90%
 - (e) 5.0%

12. A trust fund is being set up by a single payment so that at the end of n years there will be \$A in the fund. If interest is compounded continuously at annual rate of 4.5%, then how much money should be paid into the fund initially?

Éxercice 5.3 Example 3 (a) $Ae^{-0.045n}$ (correct) (b) $ne^{-0.045A}$

- (c) $Ae^{0.045n}$
- (d) $A(1.045)^n$
- (e) $A(1.045)^{-n}$

13. What is the approximate the present value of an annuaity of \$1500 per month for 1.25 years at the rate of 9% compounded monthly?

(a) \$21,205.49 _	Enercie	<u>S-9</u> (correct)
(b) \$3779.83	Q ± 8	
(c) $22,105.94$		
(d) \$502,21.49		

(e) \$49.21205

14. For an interest rate of 4% compounded monthly find the present value of an annuity of \$150 at the end of each month for eight months and \$175 thereafter at the end of each month for further two years.

(a) \$5106.27	Exercise 5-4 (correct)
(b) \$4121.10	Q # 17
(c) \$5500.33	

- (d) \$5421.10
- (e) \$4521.27

- 15. A combination lock has 26 different letters, and a sequence of three different letters must be selected for the lock to open. How many combinations are possible?
 - (a) 15600 (correct) (b) 2600 (Q J1 26 (c) 10,626 Exercise 8-1 (d) 1771 (e) 3654

16. A university issues a questionnaire whereby each student must rank the four items with which he or she is most satisfied. The items are: tuition fees, parking fees, class sizes, dormitory rooms, cafeteria food and library. The rank is to be indicated by the numbers 1,2,3 and 4. Where 4 indicates the item involving the greatest satisfaction and 1 the least. In how many ways can a student answer the questionnaire?

(a) 360 (correct) (b) 15 Q #27 Exercice 8-1 (c) 24 (d) 210

(e) 36

- 17. In how many different ways can a exam be answered? The exam consists of five MCQ's with five choices for each MCQ and five true-false questions.
 - (a) 100000 ______(correct) (b) 78125 (c) 2048 Branple 3 (d) 2500 Page # 360
 - (e) 10000

18. In a horse race, a horse is said to finish in the money if it finishes in first, second or third place. For an eight-horse race, in how many ways can the horses finish in the money? Assume no ties.

19. In a 20-question examination, each question is worth 5 points and is graded right or wrong. Considering the individual questions, in how many ways can a student score more than 80 points?

(a) 1351	× *	(correct)
(b) 1350		1- 1- 1- T
(c) 6201		Question \$115
(d) 5311		Exercise 8-2
(e) 1331		

20. A committee has three male and five female members. In how many ways can a subcommittee of four be selected if at least two females are to serve on it?

Q # 34 Exercise 8.2 (correct)(a) 65 (b) 25 (c) 41 (d) 52

(e) 55