King Fahd University of Petroleum and Minerals Department of Mathematics

Math 106 Major Exam II 211 15 November, 2021

EXAM COVER

Number of versions: 4 Number of questions: 15 Number of Answers: 5

King Fahd University of Petroleum and Minerals Department of Mathematics

 $\begin{array}{c} {\rm Math~106} \\ {\rm Major~Exam~II} \\ 211 \end{array}$

15 November, 2021 Net Time Allowed: 90 Minutes

MASTER VERSION

- 1. Consider $f(x) = \frac{1}{3}x^3 8x^2$ on the interval [0,3]. Then f(x) has absolute minimum at $x = \frac{1}{3}x^3 8x^2$
 - (a) 3
 - (b) 0
 - (c) 8
 - (d) 16
 - (e) -8

- 2. Consider the function y, where $y' = \frac{x^2(x-2)}{x-1}$. The graph of y has
 - (a) a local minimum at x = 2 and no local maximum (correct)
 - (b) a local minimum at x = 2 and a local maximum at x = 0
 - (c) a local maximum at x = 2 and no local minimum
 - (d) a local maximum at x = 2 and a local minimum at x = 0
 - (e) a local minimum at x = 0 and no local maximum

3. Vertical asymptote(s) of the graph of $y = \frac{x^2 - 1}{x^2 - x}$ is/are

(a)
$$x = 0$$

- (b) x = 1
- (c) x = -1
- (d) x = 0 and x = -1
- (e) x = -2

- 4. The graph of $f(x) = \frac{x^2 3x}{x^2 4x + 3}$ has
 - (a) one vertical asymptote and one horizontal asymptote (correct)
 - (b) two vertical asymptotes and one horizontal asymptote
 - (c) two vertical asymptotes
 - (d) one vertical asymptote and three horizontal asymptotes
 - (e) two vertical asymptotes and one oblique asymptote

- 5. Let $f(x) = \frac{2}{2x-3}$ then
 - (a) f(x) has no inflection point

(correct)

- (b) f(x) has inflection point at x = 2/3
- (c) f(x) has inflection point at x = 3/2
- (d) f(x) has horizontal asymptote at x = 3/2
- (e) f(x) has vertical asymptote at x = 2/3

- 6. Given the demand function p = 500 5q, then the marginal revenue is
 - (a) decreasing only for q > 0

(correct)

- (b) increasing only for q > 50
- (c) increasing only for q < 50
- (d) decreasing only for q > 50
- (e) increasing only for q > 0

- 7. A manufacturer finds that the total cost c, of producing a product is given by the cost function $c = 0.01q^2 + 11q + 100$. The average cost per unit will be a minimum if the number of units produced are

 - (b) 10
 - (c) 300
 - (d) 1100
 - (e) 200

- 8. The function $y = \frac{x^4}{3} \frac{x^2}{2} 6$ is
 - (a) concave up on $\left(-\infty, -\frac{1}{2}\right)$ and $\left(\frac{1}{2}, \infty\right)$
 - (b) concave up on $\left(-\frac{1}{2}, \infty\right)$
 - (c) concave down on $\left(-\infty, -\frac{1}{2}\right)$
 - (d) concave down on $\left(-\infty, -\frac{1}{2}\right)$ and $\left(\frac{1}{2}, \infty\right)$
 - (e) concave up on $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Let $y''(x) = 9x^2 + 2e^x$, y'(0) = 2 and y(0) = 9. Then y(-1) is equal to 9.

- (correct)
- (a) $\frac{31}{4} + \frac{2}{e}$ (b) $\frac{25}{4} + \frac{2}{e}$ (c) $\frac{31}{4} \frac{2}{e}$
- (d) $\frac{25}{4} + e^2$
- (e) -3 + e

Suppose that the demand equation for a product is $2 + \frac{q^2}{200} = \frac{4000}{n^2}$. Using 10. differentials and the fact that $\frac{dq}{dp} = -2.5$ when p = 20, the approximation of the number of product units that will be demanded if the price per unit is reduced from p = 20 into p = 19.6 is

- 41 (a) (correct)
- (b) 42
- (c) 38
- (d) 35
- (e) 40

11. If $y'(x) = \frac{3x}{3x^2 + 6}$ and y(1) = 0 then y(x) is equal to

(a)
$$\ln \sqrt{\frac{3x^2+6}{9}}$$

- (b) $\frac{1}{3}\ln(3x^2+6)$
- (c) $\frac{1}{3}\ln(3x^2+6)+C$
- (d) $\ln \sqrt{\frac{3x^2+6}{3}}$
- (e) $-\frac{1}{2}(3x^2+6)^{-2}+C$

12. If the marginal-revenue function for a manufacturer's product is $\frac{dr}{dq} = 100 - 12q - 5q^4$, then the demand equation is

(a)
$$p = 100 - 6q - q^4$$

- (b) $p = 100q 6q^2 q^5$
- (c) $p = 100 12q 5q^4$
- (d) $p = 100 + 10q^3$
- (e) $p = 10 5q^4$

13.
$$\int (30e^{-30x} + e) \, dx$$

(a)
$$-e^{-30x} + ex + c$$
 (correct)

(b)
$$-900e^{-30x} + ex + c$$

(c)
$$-\frac{30}{31}e^{-31x} + ex + c$$

(d)
$$-900e^{-30x} + e^x + c$$

(e)
$$e^{-30x} + e^x + c$$

$$14. \qquad \int \frac{\sqrt{x}}{e^{\sqrt{x^3}}} \, dx =$$

(a)
$$-\frac{2}{3e^{\sqrt{x^3}}} + c$$
 (correct)

(b)
$$\frac{\sqrt{x}}{e^{\sqrt{x^3}}} + c$$

(c)
$$\frac{1}{2e^{\sqrt{x^3}}} + c$$

(c)
$$\frac{1}{2e^{\sqrt{x^3}}} + c$$
(d)
$$\frac{\sqrt{x^3}}{3e^{\sqrt{x^3}}} + c$$
(e)
$$e^{\sqrt{x^3}} + c$$

(e)
$$e^{\sqrt{x^3}} + e^{\sqrt{x^3}}$$

15.
$$\int (2e^x + 3x^e + x^{-2}) \, dx$$

(a)
$$2e^x + 3\frac{x^{e+1}}{e+1} - \frac{1}{x} + c$$
 (correct)

(b)
$$2e^x + 3x^e + \frac{1}{x} + c$$

(c)
$$2e^x + 3x^e + \frac{1}{x^3} + c$$

(d)
$$e^x + 3\frac{x^{e+1}}{e+1} - \frac{1}{x} + c$$

(e)
$$2e^x + \frac{x^{e+1}}{e+1} - \ln|x| + c$$