King Fahd University of Petroleum and Minerals Department of Mathematics

MATH 106 Major Exam II 213 21 July 2022

Net Time Allowed: 120 minutes

MASTER VERSION

- 1. The solpe of tangent line to the curve $y = 2^{2x^2}$ at x = 1 is
 - (a) $16 \ln(2)$
 - (b) ln(2)
 - (c) $4 \ln(2)$
 - (d) $8 \ln(2)$
 - (e) $32 \ln(2)$

- 2. The average cost \bar{c} for producing q units of the product is given by $\bar{c} = \frac{1}{q}(10,000e^{\frac{q}{900}}) + q$. At a production level of 900 units, the **rate of change** of marginal cost is
 - (a) $\frac{1}{81}(e+162)$
 - (b) $\frac{10}{81}(e+162)$
 - (c) $\frac{10}{9}(e+162)$
 - (d) $\frac{1}{81}(e+2)$
 - (e) $\frac{1}{81}(e^9 + 162)$

- 3. If $\frac{d}{dx}(c^{2x}-(2x)^c)\Big|_{x=\frac{1}{2}}=0$ then the value of the positive constant c is
 - (a) (correct)
 - (b) $e^{\frac{1}{2}}$

 - (c) e^2 (d) $e^{-\frac{1}{2}}$
 - (e) -e

- 4. If $y = x^{x^3}$ then $\frac{dy}{dx} = ?$
 - (a) $x^{x^3}(x^2 + 3x^2 \ln x)$ (correct)
 - (b) $x^{x^3}(x^2 + \ln x)$
 - (c) $x^{x^3}(x^3 + x^3 \ln x)$
 - $(d) x^{x^3} (3x^2 \ln x)$
 - (e) $x^{x^3}(x^2 + 3x^2)$

$$5. \quad \frac{d}{dx}x^{x^x} =$$

(a)
$$x^{x^x} x^x \left(\frac{1}{x} + (1 + \ln x) \ln x\right)$$

(b)
$$x^{x^x}x^x\left(\frac{1}{x} + (1+\ln x)\right)$$

(c)
$$x^{x^x} \left(\frac{1}{x} + (1 + \ln x) \ln x \right)$$

(d)
$$x^{x^x}x^x((1+\ln x)\ln x)$$

(e)
$$x^x \left(\frac{1}{x} + (1 + \ln x) \ln x\right)$$

6. If
$$y^2 - 6xy = 4$$
 then $\frac{d^2y}{dx^2}\Big|_{(1,6)} =$

(a)

- (b) -6
- (c) 1 (d) $\frac{1}{6}$
- (e) $-\frac{1}{6}$

7. The equation of the tangent line to $y^2e^{2x} = 3y + x^2$ at (0,3) is

(a)
$$y = -6x + 3$$

(correct)

(b)
$$y = 6x + 3$$

(c)
$$y = \frac{3}{18}x + 3$$

$$(d) y = -6x - 3$$

(e)
$$y = \frac{3}{18}x - 3$$

8. The third derivative of $y = e^{-5x} + 8\ln(2x^4)$ is

(a)
$$-125e^{-5x} + 64x^{-3}$$

(b)
$$25e^{-5x} - 32x^{-2}$$

(c)
$$-125e^{-5e} - 64x^{-2}$$

(d)
$$125e^{-5x} - 64x^{-3}$$

(e)
$$-125e^{-5x} - 64x^{-4}$$

- 9. Suppose that the demand equation for a monopolist's product is p = 400 2q and the average cost function is $\bar{c} = 0.2q + 4 + \frac{400}{q}$, where q is the number of units and both p and \bar{c} expressed in dollars per unit. Then which of the following statement is **True**?
 - (a) The maximum profit is at q = 90.

- (b) The minimum profit is at q = 90.
- (c) The profit is decreasing on 0 < q < 80.
- (d) The profit is increasing on $80 < q < \infty$.
- (e) The maximum profit is at q = 80.

- 10. The graph of $y = (x^2 1)^4$ is
 - (a) increasing on (-1,0) and (1,2)

- (b) decreasing on (-1,0) and (1,2)
- (c) increasing on (-2,0) and (0,2)
- (d) relative minimum at x = 0
- (e) relative maximum at x = 1

- 11. On the interval [0, 2], the function $y = 3x^4 4x^3$ has
 - (a) an absolute maximum at x = 2 and an absolute minimum at x = 1.
 - (b) an absolute minimum at x = 1 and no absolute maximum.
 - (c) an absolute maximum at x = 0 and an absolute minimum at x = 1.
 - (d) an absolute maximum at x = 2 and an absolute minimum at x = 0.
 - (e) no absolute maximum and no absolute minimum.

- 12. Consider the function $f(x) = 4 + x^2 x^3$ on the interval [-1, 1]. Then f(x) has an absolute maximum at x =
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) $\frac{-1}{2}$
 - (e) $\frac{1}{2}$

If $f(x) = x^3 - 7x^2 + 2x - 5$ then f is concave down on the interval 13.

(a) $\left(-\infty, \frac{7}{3}\right)$

(correct)

- (b) $(-\infty, 3)$
- (c) $(\frac{2}{3}, \infty)$
- (d) $(\frac{7}{3}, \infty)$ (e) $(-\infty, \infty)$

The function $f(x) = \frac{x^5}{20} + \frac{x^4}{12} + x - 3$ has how many inflection points? 14.

- (a) one (correct)
- (b) two
- (c) three
- (d) four
- (e) none

15. Vertical asymptote(s) of the graph of
$$f(x) = \frac{2x^2 + 3x + 1}{x^2 - 5}$$
 is (are)

(a)
$$x = -\sqrt{5}$$
 and $x = \sqrt{5}$

(b)
$$x = -5$$
 and $x = 5$

(c)
$$x = -\sqrt{2}$$
 and $x = \sqrt{2}$

(d)
$$x = \frac{-1}{5} \text{ and } x = \frac{1}{5}$$

(e)
$$x = \frac{3}{2}$$
 and $x = \frac{3}{2}$

16. The graph of
$$f(x) = \frac{9x^2 - 16}{2(3x+4)^2}$$
 has

- (a) one vertical asymptote and one horizontal asymptote. (correct)
- (b) only one horizontal asymptote.
- (c) only one vertical asymptote
- (d) only two vertical asymptotes.
- (e) only two horizontal asymptotes.

- 17. A manufacturer found that the total cost c of producing q units of a product is given by $c = 0.02q^2 + 2q + 800$. The average cost will be a minimum at
 - (a) q = 200 units
 - (b) q = 100 units
 - (c) q = 400 units
 - (d) q = 20 units
 - (e) q = 40 units

- 18. The demand equation for a monopolist's product is p = 200 0.98q, where p is the price per unit (in dollars) of producing q units. If the total cost c (in dollars) of producing q units is given by $c = 0.02q^2 + 2q + 8000$. Find the level of production at which profit is maximized?
 - (a) 99 units (correct)
 - (b) 90 units
 - (c) 100 units
 - (d) 80 units
 - (e) 110 units

19. If $f(x) = 2e^x - 8^x$ then f'(1) is

(a)
$$2e - 8\ln(8)$$

(correct)

- (b) $2 8 \ln(8)$
- (c) $-8\ln(8)$
- (d) $2e^2 \ln(8)$
- (e) ln(8)

20. If
$$f(x) = 4x^{\frac{3}{5}} - \frac{1}{8}x^{-2} - x^{\frac{1}{2}}$$
 then $f'(1) =$

(a) $\frac{43}{20}$

- (b) $\frac{53}{20}$
- (c) $\frac{53}{12}$
- (d) $\frac{43}{12}$
- (e) $-\frac{53}{12}$