1.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1} =$$

- (a) $\frac{2}{3}$ _____(correct)
- (b) ∞
- (c) 0
- (d) 2
- (e) $\frac{3}{2}$

- 2. If $\lim_{x\to 3} \frac{x^2 2x 3}{x^2 + 2x 15} = L_1$ and $\lim_{x\to 0} \frac{(x+2)^2 4}{x} = L_2$, then $L_2 L_1 =$
 - (a) $\frac{7}{2}$ _____(correct)
 - (b) ∞
 - (c) 0
 - (d) 4
 - (e) $\frac{2}{7}$

- 3. $\lim_{x \to -\infty} \frac{5x}{(2x-1)^2} =$
 - (a) 0 _____ (correct)
 - (b) ∞
 - (c) $-\infty$

 - (d) $\frac{5}{2}$ (e) $\frac{5}{4}$

- 4. $\lim_{x \to +\infty} (\sqrt{x^2 + x} x) =$
 - (a) $\frac{1}{2}$ ______ ____(correct)
 - (b) ∞
 - (c) $-\infty$
 - (d) 0
 - (e) 1

- 5. The function $f(x) = \frac{x-3}{x^3-9x}$ is discontinuous at
 - (a) both x = 0 and x = 3 _____(correct)
 - (b) x = 0 only
 - (c) x = -3 only
 - (d) x = 3 only
 - (e) x = 1 only

- 6. The function $f(x) = \frac{x^4}{x^4 1}$ is discontinuous at
 - (a) both x = 1 and x = -1 _____(correct)
 - (b) x = -1 only
 - (c) x = 0 only
 - (d) x = 2 only
 - (e) x = 1 only

- 7. The equation of tangent line to the curve $y = f(x) = x^2 + 2x + 3$ at the point (1,6) is
 - (a) y = 4x + 2 _____(correct)
 - (b) y = 4x 2
 - (c) y = 6x
 - (d) y = -4x + 10
 - (e) y = x + 6

- 8. The equation of the tangent line to the curve $y = \frac{\sqrt{x}(2-x^2)}{x}$ when x = 4 is
 - (a) $y = \frac{-25}{8}x + \frac{11}{2}$ _____(correct)
 - (b) $y = \frac{-27}{8}x + \frac{13}{2}$
 - (c) y = -3x + 2
 - (d) $y = \frac{27}{8}x \frac{13}{2}$
 - (e) y = 3x 2

9. If y = f(x) and $\frac{dy}{dx} = 12$ at x = 3. Assume x changes from 3 to 3.2. Then the estimate change in y is equal to

(a) 2.4 _____(correct)

- (b) 12
- (c) 0.6
- (d) 1.2
- (e) 6

10. Let $\bar{c} = 0.1q^2 - 0.2q + 5 + \frac{5000}{q}$ be the average cost function. Then the cost of producing the 11-th item is approximately equal to

(a) 31 _____(correct)

- (b) 100
- (c) 27
- (d) 33
- (e) 51

11. A consumption function is given by

$$C = 6 + \frac{3I}{4} - \frac{\sqrt{I}}{3}.$$

Then at I=25, the marginal propensity to save is equal to

- (a) 17/60 _____(correct)
- (b) 43/60
- (c) -43/60
- (d) 37/60
- (e) -21/30

- 12. If $y = 2u^2 3u 2$ and $u = x^2 + 4$. Then $\frac{dy}{dx}$ at x = 1 is
 - (a) 34 _____(correct)
 - (b) 30
 - (c) 26
 - (d) 31
 - (e) 18

13. If $y = (x^3 - x^2 + 1)^{100}$, then y'(1) =

- (a) 100 _____ (correct)
- (b) 9900
- (c) 99
- (d) 1000
- (e) 0

- 14. The derivative of the function $y = \ln\left(\frac{2x+3}{3x-4}\right)$ is given by
 - (a) $\frac{-17}{(2x+3)(3x-4)}$ ——
 - (b) $\frac{-15}{(2x+3)(3x-4)}$

 - (c) $\frac{-19}{(2x+3)(3x-4)}$ (d) $\frac{15}{(2x+3)(3x-4)}$
 - (e) $\frac{17}{(2x+3)(3x-4)}$

- 15. The slope of the curve $y = \frac{x}{\ln x}$ at x = 3 is
 - (a) $\frac{1}{\ln 3} \frac{1}{(\ln 3)^2}$ ______(correct)
 - (b) $\frac{1}{\ln 5} \frac{1}{(\ln 5)^2}$
 - (c) $\frac{1}{\ln 3} + \frac{1}{(\ln 3)^2}$
 - (d) $\frac{3}{\ln 3}$
 - (e) $\ln 3 + (\ln 3)^2$

- 16. If $f(x) = e^{1/x}$, then the slope of the tangent line at x = 2 is equal to
 - (a) $\frac{-\sqrt{e}}{4}$ _____(correct)
 - (b) $\frac{\sqrt{e}}{4}$
 - (c) $4\sqrt{e}$
 - (d) $-4\sqrt{e}$
 - (e) $\frac{\sqrt{e}}{2}$

- 17. The slope of the tangent line to the curve $y = 5^{x \ln x}$ at x = 1 is equal to
 - (a) ln 5 _____(correct)
 - (b) ln 2
 - (c) 5 ln 5
 - (d) 0
 - (e) ln 3

- 18. The slope of the tangent line to the curve of $f(x) = 3x \frac{\frac{2}{x} \frac{3}{x-1}}{x-2}$ at x = -1 is
 - (a) 91/36 _____(correct)
 - (b) 125/36
 - (c) 87/36
 - (d) 37/18
 - (e) 81/18

- 19. If $x + xy + y^2 = 7$, where y is a function of x. Then $\frac{dy}{dx}$ at the point (1,2) is equal to
 - (a) -3/5 _____(correct)
 - (b) -1/5
 - (c) -3/4
 - (d) 3/5
 - (e) 1/5

- 20. Given the demand equation $p = 100 q^2$, the rate of change of q with respect to p at q = 2 is
 - (a) -1/4 _____(correct)
 - (b) 4
 - (c) -4
 - (d) 0
 - (e) 1