King Fahd University of Petroleum and Minerals Department of Mathematics

Math 106 Exam 1 223 July 12, 2023

Net Time Allowed: 120 Minutes

USE THIS AS A TEMPLATE

Write your questions, once you are satisfied upload this file.

1. If
$$f(x) = 2 - 3x^2$$
, then $\lim_{h \to 0} \frac{f(3+h) - f(3)}{h} =$

- (a) -18
- (b) 18
- (c) 25
- (d) -25
- (e) -16

$$2. \lim_{x \to 2} \frac{x^4 - 16}{x^2 - x - 2} =$$

- (a) $\frac{32}{3}$
- (b) 0
- (c) ∞
- (d) $-\infty$
- (e) $\frac{8}{3}$

3.
$$\lim_{x \to \infty} \left(\frac{1}{x+1} - \frac{2x - 6x^2 + 1}{3x^2 + x} \right) =$$

- (a) 2
- (b) -2
- (c) 0
- (d) ∞
- (e) $-\infty$

4.
$$\lim_{x \to 2} \frac{(x^3 - 8)(x + 2)}{x^2 - 4} =$$

- (a) 12
- (b) 0
- (c) 8
- (d) 48
- (e) ∞

5. If

$$f(x) = \begin{cases} \sqrt{x+1}, & x > 3\\ x^2 + kx + k - 3, & x \le 3, \end{cases}$$

then the value of k that makes the function continuous everywhere is

- (a) -1
- (b) 1
- (c) 2
- (d) -2
- (e) 0

6. The function $f(x) = \frac{x^2 - x - 2}{x^4 - x^2}$ is discontinuous at

- (a) x = 0, x = 1 and x = -1
- (b) x = 0 and x = 1 only
- (c) x = 1 and x = -1 only
- (d) x = 1 only
- (e) x = 0 only

- 7. $\lim_{h \to 0} \frac{(4+h)^2 + \sqrt{4+h} 18}{h} =$
 - (a) $\frac{33}{4}$
 - (b) 0
 - (c) 8
 - (d) $\frac{17}{2}$
 - (e) $\frac{33}{2}$

- 8. The graph of $f(x) = \frac{1}{4}x^4 + x^3 + x^2$ has horizontal tangent line at
 - (a) x = -1, and x = 0, and x = -2
 - (b) x = 0, x = -1, and x = 2
 - (c) x = 0, x = -2 only
 - (d) x = 2, x = 0 only
 - (e) x = -1, x = -2, x = 2

- 9. If a manufacturer's average-cost equation is $\bar{c} = 0.01q^2 0.1q$. Then the cost of producing the 11^{th} unit approximately is
 - (a) 1
 - (b) 1.5
 - (c) 2
 - (d) 2.5
 - (e) 3

- 10. A disc of metal is being heated. If the radius increased from $10\,cm$ to $10.1\,cm$, then the approximate the change in the area
 - (a) $2\pi \, cm^2$
 - (b) $\pi \, cm^2$
 - (c) $\frac{\pi}{2}$ cm²
 - (d) $3\pi \, cm^2$
 - (e) $4\pi \, cm^2$

11. If the average cost function is given by

$$\bar{c} = 0.00002q^2 - 0.01q + 6 + \frac{20000}{q}.$$

Then the marginal cost when q = 100 is

- (a) 4.6
- (b) 11
- (c) 5.8
- (d) 11.2
- (e) 8.6

- 12. If the equation of the tangent line to the curve of $y = \frac{6}{x-1}$ at x = 3 is y = ax + b, then $a + b = \dots$
 - (a) 6
 - (b) -3
 - (c) -6
 - (d) 12
 - (e) -12

13. If $y = (x^{2/3} + 3)(x^{-1/3} + 5x)$, then $y'(1) = \dots$

- (a) $\frac{68}{3}$
- (b) 15
- (c) $\frac{74}{3}$
- (d) 25
- (e) 40

14. If $f(x) = ee^x e^{x^2}$, then f'(1) =

- (a) $3e^3$
- (b) $2e^2$
- (c) e^{3}
- (d) e^2
- (e) $3e^5$

- 15. For the demand function $p = 10e^{-0.001q}$, then rate of change of the quantity (q) with respect to the price (p) at q = 500 is equal to
 - (a) $-100\sqrt{e}$
 - (b) $-10e^2$
 - (c) 100 e
 - (d) $-10\sqrt{e}$
 - (e) $10\sqrt{e}$

- 16. If $y = (5u + 6)^3$ and $u = (x^2 1)^4$, then $\frac{dy}{dx}$ at x = 1 is equal to
 - (a) 0
 - (b) 5
 - (c) 10
 - (d) 15
 - (e) 30

17. Suppose the demand function is given by

$$p = 100 - \sqrt{q^2 + 20}$$

then the marginal revenue when q=4 is

- (a) $\frac{274}{3}$
- (b) $\frac{244}{3}$
- (c) $\frac{200}{3}$
- (d) $\frac{215}{3}$
- (e) $\frac{400}{3}$

- 18. Let $y = \ln \sqrt[3]{\frac{x^3 1}{x^3 + 1}}$ then $\frac{dy}{dx}$ at x = 2 is equal to
 - (a) $\frac{8}{63}$
 - (b) $\frac{-1}{32}$
 - (c) $\frac{5}{64}$
 - (d) 0
 - (e) $-\frac{32}{27}$

- 19. The equation of the tangent line to the curve of $y = x \ln x x$ at x = e is
 - (a) y = x e
 - (b) y = x
 - (c) y = x + e
 - (d) y = ex + 1
 - (e) y = ex 1

- 20. The slope of the tangent line to the curve of $y = \frac{1-x^2}{5}$ at the point (4, -3) is
 - (a) $\frac{-8}{5}$
 - (b) $\frac{-5}{8}$
 - (c) $\frac{-5}{7}$
 - (d) $\frac{7}{5}$
 - (e) $\frac{1}{5}$