1. If (a, b) is the inflection point of the function $f(x) = x^3 - 3x + 2$, then a + b =

(a) 2	(correct)
(b) -1	
(c) 1	
(d) -2	
(e) 0	

2. The function $f(x) = x^4 - 4x^3$ is concave down over

(e) $(0,2) \cup (3,\infty)$

- 3. For a polynomial function f, the only critical point is at x = 3 and f''(3) = -2, then
 - (a) f(x) has absolute maximum at x = 3 _____(correct)
 - (b) f(x) has absolute minimum at x = 3
 - (c) f(x) has inflection point at x = 3
 - (d) f(x) has no relative extrema
 - (e) f(x) has no absolute extrema

4. The function $f(x) = \frac{x+5}{x^2}$ has

- (a) one vertical asymptote and one horizontal asymptote _____(correct)
- (b) one vertical asymptote and no horizontal asymptote

(c) one vertical asymptote and slant asymptote

- (d) only one asymptote
- (e) no asymptotes

223, Math 106, Exam II

MASTER

5. The function
$$f(x) = \frac{x^2}{x+1}$$
 has

- (a) y = x 1 as a slant asymptote _____(correct)
- (b) no vertical asymptotes
- (c) no slant asymptote
- (d) one slant asymptote and one horizontal asymptote
- (e) y = x + 1 as a slant asymptote

- 6. Which of the following statements is **FALSE** for the function $f(x) = 2e^x 1$,
 - (a) f(x) has one critical point _____(correct)
 - (b) y = -1 is a horizontal asymptote
 - (c) no vertical asymptotes
 - (d) always increasing
 - (e) always concave up

7. A TV cable company has 4000 subscribers who are each paying monthly \$24. It can get 100 more subscribers for each \$0.5 decreasing in the monthly fee. The price that will make the maximum revenue is

(a)	22	(correct)
(b)	20	
(c)	18	
(d)	21	
(e)	16	

8. Let $y = f(x) = 2x^3 + 17$ and x changes from -1 to -1.03 then $dy \approx$

(a) -0.18	(correct)
(b) 0.18	
(c) -0.9	
0.0 (b)	

- (d) 0.9
- (e) 0.6

9. Using differentials, $e^{1.1} \approx$

- (b) *e*
- (c) e + 1
- (d) e 1
- (e) (1.2)e

10. If the demand equation of a product is p = -5q + 30, where p is the price and q is the number of units, then the price that maximize the revenue is

- (b) 10
- (c) 20
- (d) 25
- (e) 45

223, Math 106, Exam II

MASTER

11. The function $f(x) = x^{\frac{2}{3}}$ increasing on the interval

(a)
$$[0, \infty)$$
 ______(correct)
(b) $(-\infty, 0]$
(c) $[-1, \infty]$
(d) $(-\infty, -1)$
(e) $(-\infty, -1) \cup [0, \infty)$

12. The relative maximum of the graph of $f(x) = x + \frac{4}{x+1}$ is

13. If $x^2 + 4y^2 = 16$, then $\frac{d^2y}{dx^2} =$

(a)
$$\frac{-1}{y^3}$$
 (correct)
(b) $\frac{x}{y^3}$
(c) $\frac{x}{16y^3}$
(d) $\frac{-x}{y^3}$
(e) $\frac{-x}{16y^3}$

14. If
$$y = e^{x^2 + 1}$$
 then $y''(1) = \dots$

(a) $6e^2$	(c	orrect)
()		

- (b) $12e^2$
- (c) $8e^2$
- (d) 12e
- (e) 20*e*

15. The slope of the tangent line to the curve $y = (1 + e^x)^{\ln x}$ at (1, 1) is

16. The equation of tangent line to $y = (x - 1)(x - 2)^2(x + 2)^3$ at the point x = 0 is

(a)
$$y = 16x - 32$$
 ______(correct)
(b) $y = 16x + 32$
(c) $y = \frac{-1}{2}x + 32$
(d) $y = \frac{-1}{2}x - 32$
(e) $y = x$

17. The slope of the curve $x^2 = (y - x^2)^2$ at (1, 0) is

(e)
$$-2$$

18. If
$$x - y = xy$$
, then $\frac{dy}{dx}|_{x=1} = \dots$

19. If M is absolute maximum and m is absolute minimum of the function

$$f(x) = -3x^5 + 5x^3$$
 on $[-2, 0]$

then M + m =

- (d) 52
- (e) 62

20. The function $f(x) = x^2 e^x$ has

- (a) two inflection points _____(correct)
- (b) one inflection point
- (c) no inflection points
- (d) a relative maximum at x = 0
- (e) a relative minimum at x = -2